Machine Vision and Applications

, Volume 20, Issue 2, pp 93–101 | Cite as

Multiple target tracking with lazy background subtraction and connected components analysis

  • Robert G. Abbott
  • Lance R. Williams
Original Paper


Background subtraction, binary morphology, and connected components analysis are the first processing steps in many vision-based tracking applications. Although background subtraction has been the subject of much research, it is typically treated as a stand-alone process, dissociated from the subsequent phases of object recognition and tracking. This paper presents a method for decreasing computational cost in visual tracking systems by using track state estimates to direct and constrain image segmentation via background subtraction and connected components analysis. We also present a multiple target tracking application that uses the technique to achieve a large reduction in computation costs.


Background subtraction Segmentation Connected components analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atkeson, C.G., Moore, A.W., Schaal, S.: Locally weighted learning. Artif. Intell. Rev. 11(1–5), 11–73 (1997). Google Scholar
  2. 2.
    Bar-Shalom Y. and Fortmann T. (1987). Tracking and data association. Academic, San Diego Google Scholar
  3. 3.
    Cheung S.C. and Kamath C. (2004). Robust techniques for background subtraction in urban traffic video. In: Panchanathan, S. and Vasudev, B. (eds) Proceedings of Electronic Imaging: Visual Communications and Image Processing 2004 (Part 1), vol. 5308, pp 881–892. SPIE, San Jose Google Scholar
  4. 4.
    Collins J. and Uhlmann J. (1992). Efficient gating in data association with multivariate gaussian distributed states. IEEE Trans Aero Elec. Syst. 28(3): 909–916 CrossRefGoogle Scholar
  5. 5.
    Cucchiara R., Grana C., Piccardi M. and Prati A. (2003). Detecting moving objects, ghosts, and shadows in video streams. IEEE Trans. Pattern Anal. Mach. Intell. 25(10): 1337–1342 CrossRefGoogle Scholar
  6. 6.
    De Walther, U., Rutishauser, C.K., Perona, P.: On the usefulness of attention for object recognition. In: 2nd International Workshop on Attention and Performance in Computational Vision at ECCV04 (2004)Google Scholar
  7. 7.
    Fuentes, L., Velastin, S.: People tracking in surveillance applications. In: PETS 2001. Hawaii, Hamilton (2001)Google Scholar
  8. 8.
    Haritaoglu, I., Harwood, D., Davis, L.S.: W4S: A real-time system detecting and tracking people in 2 1/2d. In: ECCV (1), pp. 877–892 (1998)Google Scholar
  9. 9.
    Harville, M.: A framework for high-level feedback to adaptive, per-pixel, mixture-of-gaussian background models. In: ECCV’02: Proceedings of the 7th European Conference on Computer Vision-Part III, pp. 543–560. Springer, London (2002)Google Scholar
  10. 10.
    Itti L. and Koch C. (2001). Computational modeling of visual attention. Nat. Rev. Neurosci. 2(3): 194–203 CrossRefGoogle Scholar
  11. 11.
    Kiril, A., Konstantinova, P.: Hypotheses pruning in jpda algorithm for multiple target tracking in clutter. In: International Conference Automatic and Informatics, pp. 45–48 (2003)Google Scholar
  12. 12.
    Li, Y., Dore, A., Orwell, J.: Evaluating the performance of systems for tracking football players and ball. In: AVSS05, pp. 632–637 (2005)Google Scholar
  13. 13.
    Lipton, A., Fujiyoshi, H., Patil, R.: Moving target classification and tracking from real-time video. In: Proceedings of the 1998 DARPA Image Understanding Workshop (IUW’98) (1998)Google Scholar
  14. 14.
    Magee, D.: Tracking multiple vehicles using foreground, background and motion models. In: Proceedings of ECCV Workshop on Statistical Methods in Video Processing, pp. 7–12 (2002)Google Scholar
  15. 15.
    Nillius, P., Sullivan, J., Carlsson, S.: Multi-target tracking - linking identities using bayesian network inference. In: CVPR 2006, pp. 2187–2194 (2006)Google Scholar
  16. 16.
    Oh, S., Sastry, S.: A polynomial-time approximation algorithm for joint probabilistic data association. In: Proceedings American Control Conference (2005)Google Scholar
  17. 17.
    Oliva, A., Torralba, A.B., Castelhano, M.S., Henderson, J.M.: Top-down control of visual attention in object detection. In: ICIP (1), pp. 253–256 (2003)Google Scholar
  18. 18.
    Oliver, N.M., Rosario, B., Pentland, A.: A Bayesian computer vision system for modeling human interactions. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 831–843 (2000). Google Scholar
  19. 19.
    Orwell, J., Remagnino, P., Jones, G.: From connected components to object sequences. In: First IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, pp. 72–79. Grenoble, France (2000)Google Scholar
  20. 20.
    Parkhurst D., Law K. and Niebur E. (2002). Modeling the role of salience in the allocation of overt visual attention. Vis. Res. 42(1): 107–123 CrossRefGoogle Scholar
  21. 21.
    Rosales, R., Sclaroff, S.: Improved Tracking of Multiple Humans with Trajectory Predcition and Occlusion Modeling. Tech. Rep. BUCS-TR-1998-007, CS Department, Boston University (1998).
  22. 22.
    Stark L., Privitera C., Yang H., Azzariti M., Ho Y., Blackmon T. and Chernyak D. (2001). Representation of human vision in the brain: How does human perception recognize images?. J. Electron. Imaging 10(1): 123–151 CrossRefGoogle Scholar
  23. 23.
    Stauffer, C., Grimson, W.: Adaptive background mixture models for real-time tracking. In: CVPR, pp. 2246–2252. IEEE Computer Society, LOS Alamitos (1999)Google Scholar
  24. 24.
    Stronger D. and Stone P. (2007). Selective visual attention for object detection on a legged robot. In: Lakemeyer, G., Sklar, E., Sorenti, D. and Takahashi, T. (eds) RoboCup-2006: Robot Soccer World Cup X, pp 158–170. Springer Verlag, Berlin CrossRefGoogle Scholar
  25. 25.
    Welch, G., Bishop, G.: An introduction to the kalman filter. Tech. Rep. TR 95-041, Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill (1995)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Sandia National LabsAlbuquerqueUSA
  2. 2.Department of Computer ScienceUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations