Machine Vision and Applications

, Volume 20, Issue 1, pp 11–22 | Cite as

Data mining for large scale 3D seismic data analysis

  • M. Deighton
  • M. PetrouEmail author
Original Paper


The automation of the analysis of large volumes of seismic data is a data mining problem, where a large database of 3D images is searched by content, for the identification of the regions that are of most interest to the oil industry. In this paper we perform this search using the 3D orientation histogram as a texture analysis tool to represent and identify regions within the data, which are compatible with a query texture.


Seismic Data Texture Type Seismic Facies Hydrocarbon Exploration Query Texture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bahorich M. and Farmer S. (1995). 3D seismic discontinuity for faults and stratigraphic features: the coherence cube. Leading Edge 14(10): 1053–1058 CrossRefGoogle Scholar
  2. 2.
    Bakker, P.: Image structure analysis for seismic interpretation. PhD thesis, Delft University of Technology (2002)Google Scholar
  3. 3.
    Bakker P., van Vliet L.J. and Verbeek P.W. (2001). Confidence and curvature estimation of curvilinear structures in 3D. Int. Conf. Comput. Vis. 2: 139–144 Google Scholar
  4. 4.
    Blinov A. and Petrou M. (2005). Reconstruction of 3D Horizons from 3D seismic datasets. IEEE Trans. Geosci. Remote Sensing 43: 1421–1431 CrossRefGoogle Scholar
  5. 5.
    Brown, M., Clapp, R.: Seismic pattern recognition via predictive signal/noise separation. Technical Report 102, Stanford Exploration Project (1999)Google Scholar
  6. 6.
    Cowley R. and O’Brien G. (2000). Identification and interpretation of leaking hydrocarbons using seismic data: a comparative montage of examples from the major fields in Australia’s North West Shelf and Gippsland Basin. APPEA J. 40(1): 121–150 Google Scholar
  7. 7.
    Davis L. (1981). Polarograms: a new tool for image texture analysis. Pattern Recogn. 13: 219–223 CrossRefGoogle Scholar
  8. 8.
    Deighton, M.: 3D texture analysis in seismic data. PhD thesis, University of Surrey (2004)Google Scholar
  9. 9.
    Faraklioti M. and Petrou M. (2004). Horizon picking in 3D seismic data volumes. Mach. Vis. Appls. 15(4): 216–219 CrossRefGoogle Scholar
  10. 10.
    Faraklioti, M., Petrou, M.: The use of structure tensor in the analysis of seismic data. In: Iske A., Randen T. (eds.) Mathematical Methods and Modelling in Hydrocarbon Exploration and Production. Mathematics in Industry, vol. 7. Springer, pp. 47–88. ISBN 3-540-22536-6 (2004)Google Scholar
  11. 11.
    Fukunaga K. (1990). Introduction to Statistical Pattern Recognition. Academic, San Diego zbMATHGoogle Scholar
  12. 12.
    Gao, D.: 3D vcm seismic textures: a new technology to quantify seismic interpretation. In: Ann. Intl. Mtg. Soc. Expl Geophys., Exp Abstr, pp. 1037–1039 (1999)Google Scholar
  13. 13.
    Gao D. (2003). Volume texture extraction for 3D seismic visualisation and interpretation. Geophysics 68(4): 1294–1302 CrossRefGoogle Scholar
  14. 14.
    De Groot, P.: Seismic reservoir characterisation using artificial neural networks. In: 19th Mintrop Seminar, 16–18 May 1999Google Scholar
  15. 15.
    Haralick R., Shanmugam K. and Dinstein I. (1973). Textural features for image classification. IEEE Trans. Systems, Man Cybernet. 3(6): 610–621 CrossRefGoogle Scholar
  16. 16.
    Köster, K., Spann, M.: A robust approach to unsupervised segmentation of seismic data sets. Vis Interface 121–128 (1998)Google Scholar
  17. 17.
    Kovalev V., Petrou M. and Bondar Y. (1999). Texture anisotropy in 3D images. IEEE Trans. Image Process. 8(3): 346–360 CrossRefGoogle Scholar
  18. 18.
    Linari V., Santiago M., Pastore C., Azbel K. and Poupon M. (2003). Seismic facies analysis based on 3D multiattribute volume classification, La Palma field, Maracaibo, Venezuela. Leading Edge 22: 32–36 CrossRefGoogle Scholar
  19. 19.
    Lyons, W., Herrmann, F., Grotzinger, J.: Singularity analysis: a tool for extracting lithologic and stratigraphic content from seismic data. In: Ann. Intl. Mtg. Soc. Expl Geophys., Exp Abstr, pp. 587–590 (2001)Google Scholar
  20. 20.
    Meldahl, P., Hegglend, R., Bril, B., De Groot, P.: The chimney cube, an example of semi-automated detection of seismic objects by directive attributes and neural networks: Part I; Methodology. In: Ann. Intl. Mtg. Soc. Expl Geophys., Exp Abstr, pp. 931–934 (1999)Google Scholar
  21. 21.
    Milkereit B. (1987). Decomposition and inversion of seismic data—an instantaneous slowness approach. Geophys Prospect. 35: 875–894 CrossRefGoogle Scholar
  22. 22.
    Mitchum, R., Vail, P., Sangree, J.: Stratigraphic interpretation of seismic reflection patterns in depositional sequences. In: Seismic Stratigraphy—Applications to Hydrocarbon Exploration, pp. 117–133. American Association of Petroleum Geologists (1977)Google Scholar
  23. 23.
    Special section: Carbonate geophysics. Leading Edge 22(7), 637–698 (2003)Google Scholar
  24. 24.
    O’Malley S.M. and Kakadiaris I.A. (2004). Towards robust structure-based enhancement and horizon picking in 3D seismic data. IEEE Conf. Comput. Vis. Pattern Recogn. 2: 482–489 Google Scholar
  25. 25.
    Pegoraro, R., Stewart, R.: Crewes research report: Chapter 32—3D seismic analysis using remote sensing techniques. Technical Report 7, Department of Geology and Geophysics, University of Calgary (1995)Google Scholar
  26. 26.
    Radovich B. and Oliveras R. (1998). 3D sequence interpretation of seismic instantaneous attributes from the gorgon field. Leading Edge 17(9): 1286–1293 CrossRefGoogle Scholar
  27. 27.
    Randen, T., Monsen, E., Signer, C., Abrahamsen, A., Hansen, J.O., Saeter, T., Schlaf, J.: Three dimensional texture attributes for seismic data analysis. In: Ann. Intl. Mtg. Soc. Expl Geophys., Exp Abstr, pp. 668–671 (2000)Google Scholar
  28. 28.
    Randen, T., Reymond, B., Sjulstad, H., Sonneland, L.: New seismic attributes for automated seismic facies boundary detection. In: Ann. Intl. Mtg. Soc. Expl Geophys., Exp Abstr, pp. 628–631 (1998)Google Scholar
  29. 29.
    Simaan, M.: Artificial neural network classification of texture orientations in seismic images. In: IEEE International Geoscience and Remote Sensing Symposium, Honolulu, vol. II, pp. 693–695 (2000)Google Scholar
  30. 30.
    van Spaendonck, R.L.C., Steeghs, T.P.H., Overeem, I., Fernandes, F.C.A., Fokkema, J.T.: Wavelet based volume attributes for seismic interpretation. The 63rd annual meeting of the European Association of Geoscientists and Engineers, 11–15 July 2001, AmsterdamGoogle Scholar
  31. 31.
    Tingdahl K. (2003). Improving seismic chimney detection using directional attributes. In: Nikravesh, M., Aminzahed, F. and Zadeh, L. (eds) Developments in Petroluem Science, pp 157–173. Elsevier, Amsterdam Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Centre for Vision Speech and Signal Processing, School of Electronics & Physical SciencesUniversity of SurreyGuildfordUK
  2. 2.Communications and Signal Processing Group, Department of Electrical and Electronic EngineeringImperial CollegeLondonUK

Personalised recommendations