Advertisement

Machine Vision and Applications

, Volume 19, Issue 4, pp 223–248 | Cite as

Classification of face images using local iterated function systems

  • A. Z. KouzaniEmail author
Original Paper

Abstract

There has been an increasing interest in face recognition in recent years. Many recognition methods have been developed so far, some very encouraging. A key remaining issue is the existence of variations in the input face image. Today, methods exist that can handle specific image variations. But we are yet to see methods that can be used more effectively in unconstrained situations. This paper presents a method that can handle partial translation, rotation, or scale variations in the input face image. The principal is to automatically identify objects within images using their partial self-similarities. The paper presents two recognition methods which can be used to recognise objects within images. A face recognition system is then presented that is insensitive to limited translation, rotation, or scale variations in the input face image. The performance of the system is evaluated through four experiments. The results show that the system achieves higher recognition rates than those of a number of existing approaches.

Keywords

Collage theorem Face images Fractals Image variations Local iterated function systems Recognition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The Psychological Image Collection at Stirling. URL http://pics.psych.stir.ac.uk/Google Scholar
  2. 2.
    Abate A., Distasi R., Nappi M. and Riccio D. (2006). Face authentication using speed fractal technique. Image Vision Comput. 24(9): 977–986 CrossRefGoogle Scholar
  3. 3.
    Abate, A., Riccio, M.N.D., Tortora, G.: An ifs based approach for face recognition. In: Proc. IEEE International Conference on Image Processing, vol. II, pp. 938–41 (2005)Google Scholar
  4. 4.
    Ansari, A.N., Abdel-Mottaleb, M.: 3D face modeling using two views and a generic face model with application to 3d face recognition. In: Proc. IEEE Conference on Advanced Video and Signal Based Surveillance, pp. 37–44 (2003)Google Scholar
  5. 5.
    Arandjelovic O. and Cipolla R. (2006). An information-theoretic approach to face recognition from face motion manifolds. Image Vision Comput. 24(6): 639–647 CrossRefGoogle Scholar
  6. 6.
    Bach F.R. and Jordan M.I. (2002). Kernel independent component analysis. J. Mach. Learn. Res. 3: 1–48 CrossRefMathSciNetGoogle Scholar
  7. 7.
    Barnsley M. (1988). Fractals Everywhere. Academic Press, San Diego zbMATHGoogle Scholar
  8. 8.
    Barnsley, M., Hurd, L.: Fractal Image Compression. AK Peters Ltd, (1993)Google Scholar
  9. 9.
    Barthel, K., Voye, T.: Adaptive fractal image coding in the frequency domain. In: Proc. Int. Workshop on Image Processing, Budapest, Hungary pp. 33–38. (1994)Google Scholar
  10. 10.
    Barthel, K., Voye, T., Noll, P.: Improved fractal image coding. In: Proc. Int. Picture Coding Symp., pp. 1–5 (1993)Google Scholar
  11. 11.
    Bartlett M.S., Movellan J.R. and Sejnowski T.J. (2002). Face recognition by independent component analysis. IEEE Trans. Neural Networks 13(6): 1450–1464 CrossRefGoogle Scholar
  12. 12.
    Beymer, D., Poggio, T.: Face recognition from one example view. Tech. Rep. 1536, MIT AI Lab. (1995)Google Scholar
  13. 13.
    Bichsel, M.: Strategies of robust object recognition for the identification of human faces. Ph.D. thesis, Eidgenossischen Technischen Hochschule, Zurich (1991)Google Scholar
  14. 14.
    Blanz, V., Vetter, T.: A morphable model for the synthesis of 3d faces. In: Proc. of the SIGGRAPH’99, Los Angeles, USA pp. 187–194. (1999)Google Scholar
  15. 15.
    Bowyer, K.W., Chang, K., Flynn, P.: A survey of approaches to three-dimensional face recognition. In: Proceedings of the 17th International Conference on Pattern Recognition, vol. 1, pp. 358–361 (2004)Google Scholar
  16. 16.
    Brunelli R. and Poggio T. (1992). Face recognition through geometrical features. Lecture Notes in Computer Science 588: 792–800 Google Scholar
  17. 17.
    Brunelli R. and Poggio T. (1993). Face recognition: Features versus templates. IEEE Trans. Pattern Anal. Mach. Intell. 15(10): 1042–1052 CrossRefGoogle Scholar
  18. 18.
    Buhmann, J., Lange, J., v d Malsburg, C.: Distortion invariant object recognition by matching hierarchically labeled graphs. In: Proc. IJCNN’89, pp. 151–159 (1989)Google Scholar
  19. 19.
    Chellappa R., Wilson C. and Sirohey S. (1995). Human and machine recognition of faces: A survey. Proc. IEEE 83(5): 705–740 CrossRefGoogle Scholar
  20. 20.
    Cootes T., Cooper D., Taylor C. and Graham J. (1995). Active shape models - their training and application. Comput. Vision Image Understand. 61(1): 38–59 CrossRefGoogle Scholar
  21. 21.
    Cootes, T., Taylor, C.: Active shape models - smart snakes. In: Proc. British Machine Vision Conference, pp. 266–275 (1992)Google Scholar
  22. 22.
    Cox, I.J., Ghosn, J., Yianilos, P.N.: Feature-based face recognition using mixture-distance. In: Proc. of 1996 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR’96), pp. 209–216 (1996)Google Scholar
  23. 23.
    Craw, Ellis, Lishman: Automatic extraction of face features. Pattern Recognition Lett., pp. 183–187 (1987)Google Scholar
  24. 24.
    Davoine F., Antonini M., Chassery J. and Barlaud M. (1996). Fractal image compression based on delaunay triangulation and vector quantisation. IEEE Trans. Image Process. 5(2): 338–346 CrossRefGoogle Scholar
  25. 25.
    Davoine, F., Svensson, J., Chassery, J.: A mixed triangular and quadrilateral partition for fractal image coding. In: Proc. IEEE Int. Conf. on Image Processing. Washington, DC, USA pp. 284–287 (1995)Google Scholar
  26. 26.
    Distasi R., Nappi M. and Tucci M. (2003). Fire: fractal indexing with robust extensions for image databases. IEEE Trans. Image Process. 12(3): 373–384 CrossRefGoogle Scholar
  27. 27.
    Duda, R., Hart, P., Stork, D.: Pattern Classification. Wiley-Interscience, (2000)Google Scholar
  28. 28.
    Er M.J., Chen W. and Wu S. (2005). High-speed face recognition based on discrete cosine transform and RBF neural networks. IEEE Trans. Neural Networks 16(3): 679–691 CrossRefGoogle Scholar
  29. 29.
    Eriksson, A., Weber, D.: Towards 3-dimensional face recognition. In: Proc. of the 5th IEEE AFRICON, vol. 1, pp. 401–406 (1999)Google Scholar
  30. 30.
    Face Recognition Homepage: (2005). URL http://www.face-rec.org/Google Scholar
  31. 31.
    Face Recognition Vendor Test: URL http://www.frvt.org/Google Scholar
  32. 32.
    Fisher, Y. (ed.)(1995). Fractal Image Compression: Theory and Application. Springer, New York Google Scholar
  33. 33.
    Fishler M. and Elschlager R. (1973). The representation and matching of pictorial structures. IEEE Trans. Comput. c-22(1): 67–92 CrossRefGoogle Scholar
  34. 34.
    Frigaard, C., Gade, J., Hemmingsen, T., Sand, T.: Image compression based on fractal theory. Tech. Rep. S701, Inst. for Electronics Systems, Aalborg University, Denmark (1994)Google Scholar
  35. 35.
    Gao Y. and Leung M. (2002). Face recognition using line edge map. IEEE Trans. Pattern Anal. Mach. Intell. 24(6): 764–779 CrossRefGoogle Scholar
  36. 36.
    Gao Y., Leung M., Hui S. and Tananda M. (2003). Facial expression recognition from line-based caricatures. IEEE Trans. Syst. Man Cybernet. Part A 33(3): 407–412 CrossRefGoogle Scholar
  37. 37.
    Georghiades A.S., Belhumeur P.N. and Kriegman D.J. (2001). From few to many: illumination cone models for face recognition under variable lighting. IEEE Trans. Pattern Anal. Mach. Intell. 23(6): 643–660 CrossRefGoogle Scholar
  38. 38.
    Gonzalez, R.C.,Woods,R.E.: Digital Image Processing (2nd edn.). Prentice Hall, (2002)Google Scholar
  39. 39.
    Heisele, B., Ho, P., Poggio, T.: Face recognition with support vector machines: Global versus component-based approach. In: Proc. of the Eighth IEEE International Conference on Computer Vision, Vancouver, Canada vol. 2, pp. 688–694 (2001)Google Scholar
  40. 40.
    Hesher, C., Srivastava, A., Erlebacher, G.: A novel technique for face recognition using range imaging. In: Proc. Seventh International Symposium on Signal Processing and Its Applications, pp. 201–204 (2003)Google Scholar
  41. 41.
    Hill, A., Thornham, A., Taylor, C.: Model-based interpretation of 3d medical images. In: Proc. 4th British Machine Vision Conference, Guilford, England pp. 339–348. (1993)Google Scholar
  42. 42.
    Huang, J., Heisele, B., Blanz, V.: Component-based face recognition with 3d morphable models. In: Proc. of the 4th International Conference on Audio- and Video-Based Biometric Person Authentication, pp. 23–34. Guildford, UK (2003)Google Scholar
  43. 43.
    Hutchinson J. (1981). Fractals and self-similarity. Indiana Univ. Math. J. 30(5): 713–747 zbMATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Jacquin A. (1993). Fractal image coding: a review. Proc. IEEE 81(10): 1451–1465 CrossRefGoogle Scholar
  45. 45.
    Kadyrov A. and Petrou M. (2001). The trace transform and its applications. IEEE Trans. Pattern Anal. Mach. Intell. 8(23): 811–828 CrossRefGoogle Scholar
  46. 46.
    Kanade, T.: Picture processing system by computer complex and recognition of human faces. Ph.D. thesis, Depertment of Information Science, Kyoto University (1973)Google Scholar
  47. 47.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. In: Proc. 1st International Conference on Computer Vision. London (1987)Google Scholar
  48. 48.
    Kim, C., Kim, R., Lee, S.: Novel fractal image compression method with non-iterative decoder. In: Proc. IEEE Int. Conf. on Image Processing Washington, DC, USA vol. III, pp. 268–271 (1995)Google Scholar
  49. 49.
    Kim, H., Pang, S., Je, H., Kim, D., Ban, S.: Pattern Recognition with Support Vector Machines: First International Workshop, SVM 2002 Proceedings, chap. Support Vector Machine Ensemble with Bagging. Springer, Heidelberg (2002)Google Scholar
  50. 50.
    Kirby M. and Sirovich L. (1990). Application of the Karhunen–Loeve procedure for the characterization of human faces. IEEE Trans. Pattern Anal. Mach. Intell. 12(1): 103–108 CrossRefGoogle Scholar
  51. 51.
    Kohonen T. (1984). Self-Organization and Associative Memory. Springer, Berlin zbMATHGoogle Scholar
  52. 52.
    Komleh, H., Chandran, V., Sridharan, S.: Face recognition using fractal codes. In: Proc. Int. Conf. on Image Processing, Thessaloniki, Greece vol. 3, pp. 58–61 (2001)Google Scholar
  53. 53.
    Kosugi, M.: Robust identification of human faces using mosaic pattern and bnp. In: Proc. Int. Conf. on Neural Networks for Signal Processing, pp. 209–305 (1992)Google Scholar
  54. 54.
    Kouzani, A., Nahavandi, S.: Facial features for identification. In: Proc. of IEEE Int. Conf. on Systems, Man, and Cybernetics, pp. 1372–1377 (2000)Google Scholar
  55. 55.
    Kruizinga, P., Petkov, N.: Optical flow applied to person identification. In: Proc. 1994 EUROSIM Conference on Massively Parallel Processing Applications and Development, Delft, The Netherlands pp. 871–878 (1994)Google Scholar
  56. 56.
    Kukula, E., Elliott, S.J., Waupotitsch, R., Pesenti, B.: Effects of illumination changes on the performance of geometrix facevision 3D FRS. In: Proc. 38th Annual International Carnahan Conference on Security Technology, pp. 331–337 (2004)Google Scholar
  57. 57.
    Lades M., Vorbruggen J., Buhmann J., Lange J., Malsburg C., Wurtz R. and Konen W. (1993). Distortion invariant object recognition in the dynamic link architecture. IEEE Trans. Comput. 42(3): 300–311 CrossRefGoogle Scholar
  58. 58.
    Lawrence S., Giles C., Tsoi A. and Back A. (1997). Face recognition: A convolutional neural network approach. IEEE Trans. Neural Networks 8(1): 98–113 CrossRefGoogle Scholar
  59. 59.
    Lin S., Kung S. and Lin L. (1997). Face recognition/detection by probablistic decision-based neural networks. IEEE Trans. Neural Networks 8(1): 114–132 CrossRefGoogle Scholar
  60. 60.
    Liu C. (2004). Gabor-based kernel PCA with fractional power polynomial models for face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 26(5): 572–581 CrossRefGoogle Scholar
  61. 61.
    Lu J., Plataniotis K., Venetsanopoulos A. and Li S. (2006). Ensemble-based discriminant learning with boosting for face recognition. IEEE Trans. Neural Networks 17(1): 166–178 CrossRefGoogle Scholar
  62. 62.
    Mandelbrot B. (1983). The Fractal Geometry of Nature. Freeman and Company, New York Google Scholar
  63. 63.
    Martinez A. (2002). Recognizing imprecisely localized, partially occluded andexpression variant faces from a single sample per class. IEEE Trans. Pattern Anal. Mach. Intell. 24(6): 748–763 CrossRefGoogle Scholar
  64. 64.
    Martinez A. (2003). Matching expression variant faces. Vision Res. 43(9): 1047–1060 CrossRefGoogle Scholar
  65. 65.
    Martinez A. and Kak A. (2001). Pca versus lda. IEEE Trans. Pattern Anal. Mach. Intell. 23(2): 228–233 CrossRefGoogle Scholar
  66. 66.
    Nefian, A.V., Hayes, M.H.: Hidden Markov models for face recognition. In: Proc. of the IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 2721–2724. Seattle, Washington, USA (1998)Google Scholar
  67. 67.
    Park B., Lee K. and Lee S. (2005). Face recognition using face-arg matching. IEEE Trans. Pattern Anal. Mach. Intell. 27(12): 1982–1988 CrossRefGoogle Scholar
  68. 68.
    Penev, P.: Local feature analysis: A statistical theory for information representation and transformation. Ph.D. thesis, Laboratory of Computational Neuroscience, The Rockefeller University (1998)Google Scholar
  69. 69.
    Pentland A. and Choudhury T. (2000). Face recognition for smart environments. IEEE Comput. 33(2): 50–55 Google Scholar
  70. 70.
    Pentland, A., Moghadam, B., Starner, T.: View-based and modular eigenspaces for face recognition. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 84–91 (1994)Google Scholar
  71. 71.
    Yan R.: MatlabArsenal. http://finalfantasyxi.inf.cs.cmu.edu/MATLABArsenal/MATLABArsenal.htmGoogle Scholar
  72. 72.
    Rauss, P., Phillips, J., Hamilton, M., DePersia, A.T.: FERET (Face-Recognition Technology) Recognition Algorithms. In: Proc. ATRWG Science and Technology Conference (1996)Google Scholar
  73. 73.
    Reusens, E.: Partitioning complexity issue for iterated function systems based image coding. In: Proc. EUSIPCO’94, Edinburgh, Scotland vol. 1, pp. 171–174. (1994)Google Scholar
  74. 74.
    Samal A. and Iyengar P. (1992). Automatic recognition and analysis of human faces and facial expressions: A survey. Pattern Recognition 25(1): 65–77 CrossRefGoogle Scholar
  75. 75.
    Saupe, D.: Accelerating fractal image compression by multi-dimensional nearest neighbour search. In: Proc. IEEE Data Compression Conference, Snowbird UT, USA pp. 222–231 (1995)Google Scholar
  76. 76.
    Saupe, D.: Lean domain pools for fractal image compression. In: Still-Image Compression II, SPIE Proc., San Jose, CA, USA vol. 2669, pp. 150–157 (1996)Google Scholar
  77. 77.
    Saupe, D., Hartenstein, H.: Lossless acceleration of fractal image compression by fast convolution. In: Proc. IEEE Int. Conf. on Image Processing, Lausanne, Switzerland pp. 185–188 (1996)Google Scholar
  78. 78.
    Shapiro, L.G., Stockman, G.C.: Computer Vision. Prentice Hall, (2001)Google Scholar
  79. 79.
    Shen, X., Hogg, D.: 3d shape recovery using a deformale model. In: Hancock, E. (ed.) Proc. British Machine Vision Conference, BMVA Press pp. 387–396 (1994)Google Scholar
  80. 80.
    Srisuk, S., Petrou, M., Kurutach, W., Kadyrov, A.: Face authentication using the trace transform. In: Proc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Madison, Wisconsin, USA pp. 305–312 (2003)Google Scholar
  81. 81.
    Tan, T., Yan, H.: Object recognition using fractal neighbor distance: Eventual convergence and recognition rates. In: Proc. 15th International Conference on Pattern Recognition, vol. 2, p. 2781 (2000)Google Scholar
  82. 82.
    Tan T. and Yan H. (2005). Face recognition using the weighted fractal neighbor distance. IEEE Trans. Syst., Man and Cybernet. Part C, Appl. Rev. 35(4): 576–582 CrossRefGoogle Scholar
  83. 83.
    Tan X., Chen S., Zhou Z. and Zhang F. (2006). Face recognition from a single image per person: A survey. Pattern Recognition 39(9): 1725–1745 zbMATHCrossRefGoogle Scholar
  84. 84.
    Temdee, P., Khawparisuth, D., Chamnonglhai, K.: Face recognition by using fractal encoding and backpropagationneural network. In: Proc. the Fifth International Symposium on Signal Processing and its Applications, Brisbane, Qld., Australia vol. 1, pp. 159–161 (1999)Google Scholar
  85. 85.
    The Color FERET Database: http://www.itl.nist.gov/iad/humanid/colorferet/home.htmlGoogle Scholar
  86. 86.
    The PIE Database: http://www.ri.cmu.edu/projects/project_418.htmlGoogle Scholar
  87. 87.
    The YALE Database: http://cvc.yale.edu/projects/yalefaces/yalefaces.htmlGoogle Scholar
  88. 88.
    Ting K. and Zheng Z. (2003). A study of adaboost with naive bayesian classifiers: Weakness and improvement. Comput. Intell. 19(2): 873–880 CrossRefMathSciNetGoogle Scholar
  89. 89.
    Tolba A.S., El-Baz A.H. and El-Harby A.A. (2005). Face recognition: a literature review. Int. J. Signal Proces. 2(1): 88–103 Google Scholar
  90. 90.
    Turk M. and Pentland A. (1991). Eigenfaces for recognition. J. Cognit. Neurosci. 3(1): 71–86 CrossRefGoogle Scholar
  91. 91.
    Vapnik V. (1999). The Nature of Statistical Learning Theory. Springer, Heidelberg Google Scholar
  92. 92.
    Wiskott L., Fellous J., Kruger N. and Malsburg C. (1997). Face recognition by elastic bunch graph matching. IEEE Trans. Patt. Anal. Machine Intell. 19: 775–779 CrossRefGoogle Scholar
  93. 93.
    Wong, K., Law, H., Tsang, P.: A system for recognising human faces. In: Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, pp. 1638–1642 (1989)Google Scholar
  94. 94.
    Xu, C., Wang, Y., Tan, T., Quan, L.: Automatic 3D face recognition combining global geometric features with local shape variation information. In: Proc. of the Sixth IEEE International Conference onAutomatic Face and Gesture Recognition, pp. 308–313 (2004)Google Scholar
  95. 95.
    Yacoob, Y., Davis, L.: Smiling faces are better for face recognition. In: Proc. of Fifth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 52–57 (2002)Google Scholar
  96. 96.
    Yang, M.H.: Kernel eigenfaces vs. kernel fisherfaces: Face recognition using kernel methods. In: Proc. of the Fifth IEEE International Conference on Automatic Face and Gesture Recognition, Washington DC, USA pp. 215–220 (2002)Google Scholar
  97. 97.
    Yuille A., Hallinan P. and Cohen D. (1992). Feature extraction from faces using deformable templates. Int. J. Comput. Vision 8(2): 99–111 CrossRefGoogle Scholar
  98. 98.
    Zhao W., Chellappa R., Rosenfeld A. and Phillips P.J. (2003). Face recognition: A literature survey. ACM Comput. Surv. 35(4): 399–458 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.School of Engineering and Information TechnologyDeakin UniversityGeelongAustralia

Personalised recommendations