Skip to main content
Log in

Aggregation of classifiers based on image transformations in biometric face recognition

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

In this study, we investigate the use of collective knowledge of independent classifiers (experts) in the area of face recognition. We formulate a hypothesis and provide compelling experimental evidence behind it that different image transformations can offer unique discriminatory information useful for face classification. We show that such discriminatory information can be combined in order to increase classification rates over those being produced by individual classifiers. In particular, we focus on contrast enhancement realized by histogram equalization and edge detection carried out with the use of the Sobel operator. We construct feature spaces emerging from linear and nonlinear methods of dimensionality reduction, namely Eigenfaces, Fisherfaces, kernel-PCA, and Isomap. Aggregation of classifiers is accomplished by majority voting and a Bayesian product rule. Extensive experimentation is conducted using the well-known FERET and YALE datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belhumeur P.N., Hespanha J.P. and Kriegman D.J. (1997). Eigenfaces vs. Fisherfaces recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7): 711–720

    Article  Google Scholar 

  2. Bolle R.M. (2004). Guide to Biometrics. Springer-Verlag, New York

    Google Scholar 

  3. Chen W., Er M.J. and Wu S. (2006). Illumination compensation and normalization for robust face recognition using discrete cosine transform in logarithm domain. IEEE Trans. Syst. Man Cybernet. Part B (Cybernet.) 36(2): 458–466

    Article  Google Scholar 

  4. Cios K., Pedrycz W. and Swiniarski R. (2000). Data Mining Methods for Knowledge Discovery. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  5. Coltuc D., Bolon P. and Chassery J.-M. (2006). Exact histogram specification. IEEE Trans. Image Process. 15(5): 1143–1152

    Article  Google Scholar 

  6. Dougherty E.R. and Giardina C.R. (1987). Matrix Structured Image Processing. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  7. Duda R.O. and Hart P.E. (1973). Pattern Classification and Scene Analysis. J Wiley, New York

    MATH  Google Scholar 

  8. Frey, B.J., Colmenarez, A., Huang, T.S.: Mixtures of local linear subspaces for face recognition. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 32–37, June (1998)

  9. Gao Y. and Leung M.K.H. (2002). Face recognition using line edge map. IEEE Trans. Pattern Anal. Mach. Intell. 24(6): 764–779

    Article  Google Scholar 

  10. Ivanov, Y., Heisele, B., Serre, T.: Using component features for face recognition. In: Proceedings of the IEEE 6th International Conference on Automatic Face and Gesture Recognition, pp. 421–426, (2004)

  11. Jain A.K. and Pankanti S. (2006). A touch of money [biometric authentication systems]. IEEE Spectrum 43(7): 22–27

    Article  Google Scholar 

  12. Jarillo G., Pedrycz W., Reformat M. and Kwak K.-C. (2006). Deterioration of visual information in face classification using eigenfaces and fisherfaces. Mach. Visi. Appl. 17(1): 68–82

    Article  Google Scholar 

  13. Kam Ho T., Hull J.J. and Srihari S.N. (1994). Decision combination in multiple classifier systems. IEEE Trans. Pattern Anal. Mach. Intell. 16(1): 66–75

    Article  Google Scholar 

  14. Kanopoulos N., Vasanthavada N. and Baker R.L. (1998). Design of an image edge detection filter using the Sobel operator. IEEE J. Solid-State Circ. 23(2): 358–367

    Article  Google Scholar 

  15. Khan, M.A.U., Ibrahim, M.T., Khan, M.K., Khan, M.A.: Cross correlation measure for decision fusion among multiple face classifiers. In: Proceedings of the IEEE Symposium on Emerging Technologies, pp. 126–131 (2005)

  16. Kittler J. (1998). Combining classifiers: a theoretical framework. Pattern Anal. Appl. 1(1): 18–27

    Article  MathSciNet  Google Scholar 

  17. Kittler J., Hatef M., Duin R.P.W. and Matas J. (1998). On combining classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 20(3): 226–239

    Article  Google Scholar 

  18. Kuncheva L.I. (2003). Fuzzy versus non-fuzzy in combining classifiers designed by boosting. IEEE Trans. Fuzzy Syst. 11(6): 729–741

    Article  Google Scholar 

  19. Lee, J.A., Lendasse, A., Verleysen, M.: Curvilinear distance analysis versus Isomap. In: Proceedings of the 10th European Symposium on Artificial Neural Networks, pp. 185–192, April (2002)

  20. Lee J.A., Lendasse A. and Verleysen M. (2004). Nonlinear projection with curvilinear distances: Isomap versus curvilinear distance analysis. Neurocomputing 57: 49–76

    Article  Google Scholar 

  21. Lin K.-H., Lam K.-M. and Siu W.-C. (2003). Spatially eigen-weighted Hausdorff distances for human face recognition. Pattern Recognition 36(8): 1827–1834

    Article  Google Scholar 

  22. Liu, C., Wechsler, H.: A unified Bayesian framework for face recognition. In: Proceedings IEEE of the International Conference on Image Processing, vol. 1, 151–155, October (1998)

  23. Liu C. and Wechsler H. (2003). Independent component analysis of gabor features for face recognition. IEEE Trans. Neural Networks 14(4): 919–928

    Article  Google Scholar 

  24. Lu J., Plataniotis K.N. and Venetsanopoulos A.N. (2003). Face recognition using kernel direct discriminant analysis algorithms. IEEE Trans. Neural Networks 14(1): 117–126

    Article  Google Scholar 

  25. Lu, J., Plataniotis, K.N., Venetsanopoulos, A.N.: Face recognition using LDA-based algorithms. IEEE Trans. Neural Networks 14(1), pp. 195-126-208 (2003)

    Google Scholar 

  26. Montgomery D.C. and Runger G.C. (1999). Applied Statistics and Probability for Engineers. J Wiley, New York

    Google Scholar 

  27. Mu X., Watta P. and Hassoun M.H. (2005). Combining local similarity measures: summing, voting, and weighted voting. IEEE Intl Conf. Syst. Man Cybernet. 3: 2661–2666

    Article  Google Scholar 

  28. Nam M.Y., Bayarsaikhan B. and Rhee P.K. (2006). Face recognition using correlation between illuminant context. Lecture Notes Comput. Sci. 4029: 833–840

    Article  Google Scholar 

  29. Pham T.V., Worring M. and Smeulders A. (2002). Face detection by aggregated Bayesian network classifiers. Pattern Recognition Lett. 23(4): 451–561

    Article  MATH  Google Scholar 

  30. Pentland A. and Choudhury T. (2000). Face recognition for smart environments. IEEE Comput. J. 33(2): 50–55

    Google Scholar 

  31. Perlibakas V. (2004). Distance measure for PCA-based face recognition. Pattern Recognition Lett. 25(6): 711–724

    Article  Google Scholar 

  32. Phillips P.J. (1998). The FERET database and evaluation procedure for face recognition algorithms. Image Vision Comput. J. 16(5): 295–306

    Article  Google Scholar 

  33. Reza A. and Yan H. (1998). Human face image recognition: an evidence aggregation approach. Comput. Vision Image Understand. 17(2): 213–230

    Google Scholar 

  34. Schölkopf B., Smola A. and Müller K.-R. (1998). Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10: 1299–1319

    Article  Google Scholar 

  35. Takács, B., Wechsler, H.: Face recognition using binary image metrics. In: IEEE Proceedings of the Third International Conference on Automatic Face and Gesture Recognition, pp. 294–299, (1998)

  36. Tenenbaumm J.B., Langford J.C. and Silva V. (2000). A global geometric framework for nonlinear dimensionality reduction. Science 290: 2319–2323

    Article  Google Scholar 

  37. Turk, M., Pentland, A.: Face recognition using Eigenfaces. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–591, (1991)

  38. Xie, X., Lam, K.-M.: An efficient illumination compensation scheme for face recognition. In: 8th International Conference on Control, Automation, Robotics and Vision, vol. 2, pp. 1240–1243, (2004)

  39. Xu L., Krzyżak A. and Suen C.Y. (1992). Methods for combining multiple classifiers and their applications to handwriting recognition. Trans. Syst. Man, and Cybernetics 22(3): 418–435

    Article  Google Scholar 

  40. Yilmaz, A., Gökmen, M.: Eigenhill vs. eigenedge. In: Proceedings of the 15th International Conference on Pattern Recognition, vol. 2, pp. 827–830, (2000)

  41. Zhang, W. et al.: Information fusion in face identification. In: Proceedings of the 17th International Conference on Pattern Recognition, vol. 3, pp. 950–953, (2004)

  42. Zhang B.L., Zhang H. and Ge S.S. (2004). Face recognition by applying wavelet subband representation and kernel associative memory. IEEE Trans. Neural Networks 15(1): 166–177

    Article  MathSciNet  Google Scholar 

  43. Zhao, W., Chellappa, R., Krishnaswamy, A.: Discriminant analysis of principal components for face recognition. In: Proceedings of the Third IEEE International Conference on Automatic Face and Gesture Recognition, pp. 336–341, April (1998)

  44. Zhao, W., Chellappa, R.: Robust image based face recognition. In: Proceedings of the IEEE International Conference on Image Processing, Vol. 1, pp. 41–44, September (2000)

  45. http://cvc.yale.edu/projects/yalefaces/yalefaces.htmls

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Jarillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jarillo, G., Pedrycz, W. & Reformat, M. Aggregation of classifiers based on image transformations in biometric face recognition. Machine Vision and Applications 19, 125–140 (2008). https://doi.org/10.1007/s00138-007-0088-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-007-0088-9

Keywords

Navigation