Advertisement

Machine Vision and Applications

, Volume 19, Issue 5–6, pp 467–482 | Cite as

Automatic detection of dust devils and clouds on Mars

  • Andres CastanoEmail author
  • Alex Fukunaga
  • Jeffrey Biesiadecki
  • Lynn Neakrase
  • Patrick Whelley
  • Ronald Greeley
  • Mark Lemmon
  • Rebecca Castano
  • Steve Chien
Special Issue Paper

Abstract

The acquisition of science data in space applications is shifting from teleoperated data collection to an automated onboard analysis, resulting in improved data quality, as well as improved usage of limited resources such as onboard memory, CPU, and communications bandwidth. Science instruments onboard a modern deep-space spacecraft can acquire much more data that can be downloaded to Earth, given the limited communication bandwidth. Onboard data analysis offers a means of compressing the huge amounts of data collected and downloading only the most valuable subset of the collected data. In this paper, we describe algorithms for detecting dust devils and clouds onboard Mars rovers, and summarize the results. These algorithms achieve the accuracy required by planetary scientists, as well as the runtime, CPU, memory, and bandwidth constraints set by the engineering mission parameters. The detectors have been uploaded to the Mars Exploration Rovers, and currently are operational. These detectors are the first onboard science analysis processes on Mars.

Keywords

Surveillance Science Rover MER 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balme, M.R., Whelley, P., Greeley, R.: Mars: dust devil track survey in Argyre Planitia and Hellas Basin. J. Geophys. Res. 108 (2003). 10.1029/2003JE002096Google Scholar
  2. 2.
    Castano, R., Anderson, R.C., Judd, M., Estlin, T., Gaines, D., Castano, A., Bornstein, B., Wagstaff, K., Stough, T.: Recent advances: onboard autonomous science investigation system. In: EOS Trans. AGU, vol. 85(17), Fall Meet. Suppl., Abstract P43A-0913 (2004)Google Scholar
  3. 3.
    Castano, R., Estlin, T., Gaines, D., Castano, A., Bornstein, B., Stough, T., Chouinard, C., Judd, M.: Opportunistic rover science: finding and reacting to rocks, clouds and dust devils. In: Proc. IEEE Aerospace Conference. Big Sky, Montana (2006)Google Scholar
  4. 4.
    Cheng Y., Goguen J., Johnson A., Leger C., Matthies L., SanMartini M. and Willson R. (2004). The Mars Exploration Rover descent image motion estimation system. IEEE Intell. Syst. 19(3): 13–21 CrossRefGoogle Scholar
  5. 5.
    Cheng, Y., Johnson, A., Matthies, L.: MER-DIMES: a planetary landing application of computer vision. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, San Diego, CA, vol. 1, pp. 806–813 (2005)Google Scholar
  6. 6.
    Cheng, Y., Maimone, M., Matthies, L.: Visual odometry on the Mars exploration rovers. In: Proc. IEEE Int’l Conf. Systems, Man and Cybernetics, Big Island, HW, vol. 1, pp. 903–910 (2005)Google Scholar
  7. 7.
    Cheung, S.C., Kamath, C.: Robust techniques for background substraction in urban traffic video. In: SPIE Electronic Imaging, San Jose, CA, vol. 5308, pp. 881–892 (2004)Google Scholar
  8. 8.
    Cozman, F., Krotkov, E.: Automatic mountain detection and pose estimation for teleoperation of lunar rovers. In: Proc. IEEE Int’l Conf. Robotics and Automation, Albuquerque, NM, pp. 2452–2457 (1997)Google Scholar
  9. 9.
    Cozman F., Krotkov E. and Guestrin C.E. (2000). Outdoor visual position estimation for planetary rovers. Autonomous Robots 9(2): 135–150 CrossRefGoogle Scholar
  10. 10.
    Cucchiara R., Grana C., Piccardi M. and Prati A. (2003). Detecting moving objects, ghosts and shadows in video streams. IEEE Trans. Pattern Anal. Mach. Intell. 26(10): 1337–1342 CrossRefGoogle Scholar
  11. 11.
    Ettinger S.M., Nechyba M.C., Ifju P.G. and Waszak M. (2003). Vision-guided flight stability and control for micro air vehicles. Adv. Robotics 17(7): 617–640 CrossRefGoogle Scholar
  12. 12.
    Ferri, F., Smith, P.H., Lemmon, M., Renno, N.O.: Dust devils as observed by mars pathfinder. J. Geophys. Res. 108(E12) (2003)Google Scholar
  13. 13.
    Gilmore M., Castano R., Mann T., Anderson R.C., Mjolsness E., Manduchi R. and Saunders R.S. (2000). Strategies for autonomous rovers at mars. J. Geophys. Res. 105(E12): 29,223–29,237 CrossRefGoogle Scholar
  14. 14.
    Greeley, R., Kuzmin, R.O., Rafkin, S.C.R., Michaels, T., Haberle, R.M.: Wind-related features in Gusev crater, Mars. J. Geophys. Res. 108 (2003). doi:10.1029/2002JE002006Google Scholar
  15. 15.
    Greeley, R., Whelley, P., Arvidson, R., Cabrol, N., Foley, D., Franklin, B., Geissler, P., Golombek, M., Kuzmin, R., Landis, G., Lemmon, M., Neakrase, L., Squyres, S., Thompson, S.: Active dust devils in Gusev crater, Mars: Observations from the Mars Exploration Rover, Spirit. J. Geophys. Res. (in press)Google Scholar
  16. 16.
    Greeley, R., Whelley, P., Neakrase, L.: Martian dust devils: Directions of movement inferred from they tracks. Geophys. Res. Letters 31 (2004)Google Scholar
  17. 17.
    Gulick V., Morris R., Ruzon M. and Roush T. (2000). Autonomous image analysis during the 1999 Marsokhod rover field test. J. Geophys. Res. Planets 106(E4): 7745–7764 CrossRefGoogle Scholar
  18. 18.
    Immerkær J. (1996). Fast noise variance estimation. Comput. Vision Image Understanding 64(2): 300–302 CrossRefGoogle Scholar
  19. 19.
    Kiely A. and Klimesh M. (2003). The ICER progressive wavelet image compressor. IPN Prog. Rep. 42(155): 1–46 Google Scholar
  20. 20.
    Lemmon M., Wolff M., Smith M., Clancy R., Banfield D., Landis G., Ghosh A., Smith P., Spanovich N., Whitney B., Greeley R., Thompson S., Bell J. and Squyres S. (2004). Atmospheric imaging results from the Mars Exploration Rovers: spirit and opportunity. Science 306(5702): 1753–1756 CrossRefGoogle Scholar
  21. 21.
    Lo, B., Velastin, S.A.: Automatic congestion detection system for underground platforms. In: Proc. Int’l Symp. Intell. Multimedia, Video and Speech Processing, Hong Kong pp. 158–161 (2001)Google Scholar
  22. 22.
    Maki, J., III, J.B., Herkenhoff, K., Sqyres, S., Kiely, A., Klimseh, M., Schwochert, W., Litwin, T., Willson, R., Johnson, A., Maimone, M., Baumgartner, E., Collins, A., Wadsworth, M., Elliot, S., Dingizian, A., Brown, D., Hagerott, E., Scherr, L., Deen, R., Alexander, D., Lorre, J.: Mars exploration rover engineering cameras. J. Geophys. Res. 108(E12) (2003)Google Scholar
  23. 23.
    Metzger S.M., Carr J.R., Johnson J.R., Parker T.J. and Lemmon M.T. (1999). Dust devil vortices seen by the mars pathfinder camera. Geophys. Res. Lett. 26(18): 2781–2784 CrossRefGoogle Scholar
  24. 24.
    Roush, T., Shipman, M., Morris, R., Gazis, P., Pedersen, L.: Essential autonomous science inference on rovers (EASIR). In: IEEE Aerospace Conference, Big Sky, MT, vol. 2, pp. 790–800 (2004)Google Scholar
  25. 25.
    Stein F. and Medioni G. (1995). Map-based localization using the panoramic horizon. IEEE Trans. Robotics Automat. 11(6): 892–896 CrossRefGoogle Scholar
  26. 26.
    Talluri R. and Aggarwal J.K. (1993). Image/map correspondence for mobile robot self-location using computer graphics. IEEE Trans. Pattern Anal. Mach. Intell. 15(6): 597–601 CrossRefGoogle Scholar
  27. 27.
    Thompson, D., Niekum, S., Smith, T., Wettergreen, D.: Automatic detection and classification of geological features of interest. In: Proc. IEEE Aerospace Conference, Big Sky, Montana (2005)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Andres Castano
    • 1
    Email author
  • Alex Fukunaga
    • 1
  • Jeffrey Biesiadecki
    • 1
  • Lynn Neakrase
    • 2
  • Patrick Whelley
    • 2
  • Ronald Greeley
    • 2
  • Mark Lemmon
    • 3
  • Rebecca Castano
    • 1
  • Steve Chien
    • 1
  1. 1.Jet Propulsion LaboratoryPasadenaUSA
  2. 2.Department of Geological SciencesArizona State UniversityTempeUSA
  3. 3.Department of Atmospheric SciencesTexas A&M UniversityCollege StationUSA

Personalised recommendations