Machine Vision and Applications

, Volume 18, Issue 1, pp 25–40 | Cite as

A system for articulated tracking incorporating a clothing model

  • Bodo RosenhahnEmail author
  • Uwe Kersting
  • Katie Powell
  • Reinhard Klette
  • Gisela Klette
  • Hans-Peter Seidel
Original Paper


In this paper an approach for motion capture of dressed people is presented. A cloth draping method is incorporated in a silhouette based motion capture system. This leads to a simultaneous estimation of pose, joint angles, cloth draping parameters and wind forces. An error functional is formalized to minimize the involved parameters simultaneously. This allows for reconstruction of the underlying kinematic structure, even though it is covered with fabrics. Finally, a quantitative error analysis is performed. Pose results are compared with results obtained from a commercially available marker based tracking system. The deviations have a magnitude of three degrees which indicates a reasonably stable approach.


Motion capture Cloth draping Pose estimation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen B., Curless B., Popovic Z.: Articulated body deformation from range scan data. In: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, pp. 612–619. San Antonio, Texas (2002)Google Scholar
  2. 2.
    Besl P., McKay N. (1992) A method for registration of 3D shapes. IEEE Transa. Pattern Anal. Mach. Intell. 12, 239–256CrossRefGoogle Scholar
  3. 3.
    Bhat K., Twigg C., Hodgins J., Khosla P., Popovic Z., Seitz S. Estimating cloth simulation parameters from video. In: Breen D., Lin,M. (eds.) Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 37–51 (2003)Google Scholar
  4. 4.
    Bregler C., Malik J.: Tracking people with twists and exponential maps. In: Proceedings of Computer Vision and Pattern Recognition, pp. 8–15. Santa Barbara, California (1998)Google Scholar
  5. 5.
    Bregler C., Malik J., Pullen K. (2004) Twist based acquisition and tracking of animal and human kinetics. Comput. Vis. 56(3): 179–194CrossRefGoogle Scholar
  6. 6.
    Brox T., Rosenhahn B., Kersting U., Cremers D., Seidel H.P.: Nonparametric density estimation for human pose tracking. In: Pattern Recognition, 28th DAGM-symposium. Lecture Notes in Computer Science. Springer, Berlin Heidelberg New York (2006)Google Scholar
  7. 7.
    Brox T., Rousson M., Deriche R., Weickert J.: Unsupervised segmentation incorporating colour, texture, and motion. In: Petkov N., Westenberg M.A. (eds.) Proceedings of Computer Analysis of Images and Patterns. Lecture Notes in Computer Science, vol. 2756, pp. 353–360. Springer, Berlin Heidelberg New York (2003)Google Scholar
  8. 8.
    Carranza J., Theobalt C., Magnor M.A., Seidel H.P.: Free-viewpoint video of human actors. In: Proceedings of SIGGRAPH 2003, pp. 569–577 (2003)Google Scholar
  9. 9.
    Caselles V., Catté F., Coll T., Dibos F. (1993) A geometric model for active contours in image processing. Numer. Math. 66, 1–31CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Chadwick J., Haumann D., Parent R. (1989) Layered construction for deformable animated characters. Comput. Graph. 23(3): 243–252CrossRefGoogle Scholar
  11. 11.
    Chafri H., Gagalowicz A., Brun R.: Determination of fabric viscosity parameters using iterative minimization. In: Gagalowicz A., Philips W. (eds.) Proceedings of Computer Analysis of Images and Patterns. Lecture Notes in Computer Science, vol. 3691, pp. 789–798. Springer, Berlin Heidelberg New York (2005)Google Scholar
  12. 12.
    Chetverikov D., Stepanov D., Krsek P. (2005) Robust Euclidean alignment of 3D point sets: The trimmed iterative closest point algorithm. Image Vis. Comput. 23(3): 299–309CrossRefGoogle Scholar
  13. 13.
    Cheung K., Baker S., Kanade T. (2005) Shape-from-silhouette across time. Part ii. Applications to human modeling and markerless motion tracking. Comput. Vis. 63(3): 225–245CrossRefGoogle Scholar
  14. 14.
    Dervieux A., Thomasset F. (1979) A finite element method for the simulation of Rayleigh–Taylor instability. In: Rautman R. (eds) Approximation Methods for Navier–Stokes Problems Lecture Notes in Mathematics, vol 771. Springer, Berlin Heidelberg New York, pp. 145–158Google Scholar
  15. 15.
    Fua P., Plänkers R., Thalmann D. (2001) Tracking and modeling people in video sequences. Comput. Vis. Image Underst. 81(3): 285–302CrossRefzbMATHGoogle Scholar
  16. 16.
    Gavrilla D. (1999) The visual analysis of human movement: a survey. Comput. Vis. Image Underst. 73(1): 82–92CrossRefGoogle Scholar
  17. 17.
    Haddon J., Forsyth D., Parks D. The appearance of clothing. (2005)Google Scholar
  18. 18.
    Herda L., Urtasun R., Fua P. (2004) Implicit surface joint limits to constrain video-based motion capture. In: Pajdla T., Matas J. (eds) Proceedings of the 8th European Conference on Computer Vision. Lecture Notes in Computer Science, vol 3022. Springer, Prague, pp. 405–418Google Scholar
  19. 19.
    House D., DeVaul R., Breen D. (1996) Towards simulating cloth dynamics using interacting particles. Clothing Sci. Technol. 8(3): 75–94CrossRefGoogle Scholar
  20. 20.
    Johnson A.E., Kang S.B.: Registration and integration of textured 3-D data. In: Proceedings of the International Conference on Recent Advances in 3-D Digital Imaging and Modeling, pp. 234–241. IEEE Computer Society (1997)Google Scholar
  21. 21.
    Jojic N., Huang T.: Estimating cloth draping parameters from range data. In: Proceedings of the International Workshop on Synthetic–Natural Hybrid Coding and 3-D Imaging, pp. 73–76. Greece (1997)Google Scholar
  22. 22.
    Magnenat-Thalmann N., Seo H., Cordier F. (2004) Automatic modeling of virtual humans and body clothing. Comput. Sci. Technol. 19(5): 575–584CrossRefGoogle Scholar
  23. 23.
    Magnenat-Thalmann N., Volino P.(2005) From early draping to haute cotoure models: 20 years of research. Vis. Comput. 21, 506–519CrossRefGoogle Scholar
  24. 24.
    Mikic I., Trivedi M., Hunter E., Cosman P. (2003) Human body model acquisition and tracking using voxel data. Comput. Vis. 53(3): 199–223CrossRefGoogle Scholar
  25. 25.
    MoCap-Systems: Motion analysis, vicon, simi: marker based tracking systems.,, (2005)Google Scholar
  26. 26.
    Moeslund T., Granum E. (2001) A survey of computer vision based human motion capture. Comput. Vis. Image Underst. 81(3): 231-268CrossRefzbMATHGoogle Scholar
  27. 27.
    Murray R., Li Z., Sastry S. (1994) Mathematical Introduction to Robotic Manipulation. CRC Press, Baton RougezbMATHGoogle Scholar
  28. 28.
    Osher S., Sethian J.A. (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. Comput. Phys. 79, 12–49CrossRefMathSciNetzbMATHGoogle Scholar
  29. 29.
    Pritchard D., Heidrich W. (2003) Cloth motion capture. Eurographics 22(3): 37–51Google Scholar
  30. 30.
    Richards J. (1999) The measurement of human motion: a comparison of commercially available systems. Hum. Mov. Sci. 18, 589-602CrossRefGoogle Scholar
  31. 31.
    Rosenhahn B.: Pose estimation revisited. Technical Report TR-0308, Institute of Computer Science, University of Kiel, Germany (2003). Available at http://www.ks.informatik. uni-kiel.deGoogle Scholar
  32. 32.
    Rosenhahn B., Kersting U., Smith A., Gurney J., Brox T., Klette R. (2005) A system for marker-less human motion estimation. In: Kropatsch W.,Sablatnig R., Hanbury A. (eds) Pattern Recognition, 27th DAGM-symposium Lecture Notes in Computer Science, vol 3663. Springer, Vienna, pp. 230–237Google Scholar
  33. 33.
    Rosenhahn B., Sommer G. (2004) Pose estimation of free-form objects. In: Pajdla T., Matas J. (eds) Computer Vision—Proceedings of the 8th European Conference on Computer Vision Lecture Notes in Computer Science, vol 3021. Springer, Berlin Heidelberg New York, pp. 414–427Google Scholar
  34. 34.
    Rusinkiewicz S., Levoy M.: Efficient variants of the ICP algorithm. In: Proceedings of the 3rd International Conference on 3-D Digital Imaging and Modeling, pp. 224–231 (2001)Google Scholar
  35. 35.
    Weil J. (1986) The synthesis of cloth objects. Comput. Graph. Proceedings of SigGraph 20(4): 49–54CrossRefGoogle Scholar
  36. 36.
    Wikipedia: Motion capture. Motion_capture (2005)Google Scholar
  37. 37.
    You L., Zhang J.J. (2003) Fast generation of 3d deformable moving surfaces. IEEE Trans. Syst. Man Cybern. B Cybern. 33(4): 616–615CrossRefGoogle Scholar
  38. 38.
    Zhang Z. (1994) Iterative points matching for registration of free form curves and surfaces. Comput. Vis. 13(2): 119–152CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Bodo Rosenhahn
    • 1
    Email author
  • Uwe Kersting
    • 2
  • Katie Powell
    • 2
  • Reinhard Klette
    • 3
  • Gisela Klette
    • 3
  • Hans-Peter Seidel
    • 1
  1. 1.Max Planck Center for Visual Computing and CommunicationSaarbrückenGermany
  2. 2.Department of Sports and Exercise ScienceThe University of AucklandAucklandNew Zealand
  3. 3.Department of Computer ScienceThe University of AucklandAucklandNew Zealand

Personalised recommendations