Machine Vision and Applications

, Volume 17, Issue 6, pp 361–371 | Cite as

Petroglyph digitization: enabling cultural heritage scholarship

  • George V. LandonEmail author
  • W. Brent. Seales
Special Issue


The digitization of antiquities is facilitating a renaissance for scholars who have unprecedented access to rich representations of objects. Cultural Heritage digitization is a central challenge, and its subtleties are intertwined with object properties and the constraints of physical access and handling. In this paper, we present the design and analysis of a system built for the digitization of Puerto Rican petroglyphic iconography. The petroglyphs exhibit unique properties (shape, size, surface) that determine system design choices. The 3D models obtained with the system support new scholarly and educational activities, including interactive surface lighting, feature highlighting and annotation through mark-up, and immersive viewing using large-scale displays.


Structured-light 3D scanning Sub-pixel peak detection Rock art Epigraphy Enhanced study tools 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blais F., Rioux M. (1986) Real-time numerical peak detector. Signal Process. 11(2): 145–155CrossRefGoogle Scholar
  2. 2.
    Blais, F., Taylor, J., Cournoyer, L., Picard, M., Borgeat, L., Dicaire, L.G., Rioux, M., Beraldin, J.A., Godin, G., Lahnanier, C., Aitken, G.: Ultra-high resolution imaging at 50 μm using a portable XYZ-RGB color laser scanner. In: International Workshop on Recording, Modeling and Visualization of Cultural Heritage (2005)Google Scholar
  3. 3.
    Cyra, Inc.: http://www.cyra.comGoogle Scholar
  4. 4.
    Directed Perception, Inc.: Scholar
  5. 5.
    Duda R.O., Hart P.E. (1972) Use of the hough transformation to detect lines and curves in pictures. Comm. ACM 15, 11–15CrossRefGoogle Scholar
  6. 6.
    EpiDoc: Scholar
  7. 7.
    Fisher, R.B., Naidu, D.K.: A comparison of algorithms for subpixel peak detection. In: Sanzled Advances in Image Processing, Multimedia and Machine Vision. Springer, Berlin Heidelberg New York (1996)Google Scholar
  8. 8.
    Godin, G., Rioux, M., Beraldin, J.A., Levoy, M., Cournoyer, L.: An assessment of laser range measurementof marble surfaces. In: Proceedings of the 5th Conference on Optical 3-D Measurement Techniques, pp. 49–56 (2001)Google Scholar
  9. 9.
    Goskar, T, et al.: The stonehenge laser show. In: British Archaeology, pp. 9–15 (2003)Google Scholar
  10. 10.
    Gruen, A., Remondino, F., Zhang, L.: Automated modeling of the great Buddha Statue in Bamiyan, Afghanistan. In: International Society of Photogrammetry and Remote Sensing Workshop, Photogrammetric Image Analysis (2003)Google Scholar
  11. 11.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press (2000)Google Scholar
  12. 12.
    Hawkins, T., Cohen, J., Debevec, P.: A photometric approach to digitizing cultural artifacts. In: VAST ’01: Proceedings of the 2001 conference on Virtual reality, archeology, and cultural heritage, pp. 333–342. ACM Press, New York, NY, USA (2001)Google Scholar
  13. 13.
    Ikeuchi, K., Nishino, K., Nakazawa, A.: Towards the digital archive of cultural heritage–preservation and restoration of ancestral assets through observation. In: The 8th International Conference on Virtual Systems and Multimedia(VSMM2002) (2002)Google Scholar
  14. 14.
    Konica Minolta, Inc: Scholar
  15. 15.
    Levenberg K. (1944) A method for the solution of certain problems in least squares. Quart. Appl. Math. 2, 164–168zbMATHMathSciNetGoogle Scholar
  16. 16.
    Levoy, M., et al: The digital michelangelo project: 3D scanning of large statues. In: procedings SIGGRAPH (2000)Google Scholar
  17. 17.
    Marquardt D. (1963) An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11, 431–441zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Molton N., Pan X., Brady M., Bowman A.K., Crowther C., Tomlin R. (2003) Visual enhancement of incised text. Pattern Recogn. 36, 1031–1043CrossRefGoogle Scholar
  19. 19.
    Morse, P.M., Feshbach, H.: Asymptotic series, method of steepest descent. In: 4.6 in Methods of Theoretical Physics, Part I, pp. 434–443. McGraw-Hill (1953)Google Scholar
  20. 20.
    Raskar, R., Brown, M.S., Yang, R., Chen, W.C., Welch, G., Towles, H., Seales, W.B., Fuchs, H.: Multi-projector displays using camera-based registration. In: Proceedings of the conference on Visualization ’99. IEEE Computer Society Press, Los Alamitos, pp. 161–168 (1999)Google Scholar
  21. 21.
    The Ashmolean Museum: The parian marble. Scholar
  22. 22.
    United Nations Educational Scientific and Cultural Organization: Division of Cultural Heritage Programme 2004–2005 (2005)Google Scholar
  23. 23.
    Weisstein, E.W.: Nonlinear least squares fitting. MathWorld–a wolfram web Resource tmlGoogle Scholar
  24. 24.
    Wessex Archaeology/Archaeoptics Ltd: Stonehenge laser scans: an application of laser scanners in archaeology. www.stonehengelaserscan.orgGoogle Scholar
  25. 25.
    Zhang, Z.: Flexible camera calibration by viewing a plane from unknown orientations. In: International Conference on Computer Vision (ICCV’99), pp. 666–673 (1999)Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.University of KentuckyLexingtonUSA

Personalised recommendations