Machine Vision and Applications

, Volume 16, Issue 6, pp 343–355

A machine vision system for quantifying velocity fields in complex rock models

  • Rachel Cassidy
  • Philip J. Morrow
  • John McCloskey
Original Paper
  • 73 Downloads

Abstracts

In this paper we describe a machine vision system capable of high-resolution measurement of fluid velocity fields in complex 2D models of rock, providing essential data for the validation of the numerical models which are widely applied in the oil and petroleum industries. Digital models, incorporating the properties of real rock, are first generated, then physically replicated as layers of resin or aluminium (200 mm × 200 mm) encapsulated between transparent plates as a flowcell. This configuration enables the geometry to be permeated with fluid and fluid motion visualised using particle image velocimetry. Fluid velocity fields are then computed using well-tested cross-correlation techniques.

Keywords

Fluid velocity fields PIV Cross-correlation Porous fractured rock Model validation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Grant, I.: Particle imaging velocimetry: A review. In: Proceedings of the Institution of Mechanical Engineers, vol. 211, no. C, pp. 55–76 (1997)Google Scholar
  2. 2.
    Jensen, A., Sveen, J.K., Grue, J., Richon, J.-B., Gray, C.: Accelerations in water waves by extended particle image velocimetry. Exp. Fluids 30, 500–510 (2001)CrossRefGoogle Scholar
  3. 3.
    Eisele, K., Zhang, Z., Wildi, J., Müller, K.: The application of a particle tracking velocimetry system with a high speed video camera on racing cars. In: Proceedings of the 7th International Conference on Laser Anemometry, pp. 755–760 (1996)Google Scholar
  4. 4.
    Santiago, J.G., Wereley, S.T., Meinhart, C.D., Beebe, D.J., Adrian, R.J.: A particle image velocimetry system for microfluidics. Exp. Fluids 25, 316–319 (1998)CrossRefGoogle Scholar
  5. 5.
    Frisch, U., Hasslacher, B., Pomeau, Y.: Lattice-gas automata for the Navier-Stokes equation. Phys. Rev. Lett. 56(14), 1505–1508 (1986)CrossRefPubMedGoogle Scholar
  6. 6.
    Benzi, R., Succi, S., Vergassola, M.: The Lattice Boltzmann Equation: Theory and Applications. Phys. Rep. (Review section of Physics letters) 222(3), 145–197 (1992)Google Scholar
  7. 7.
    Bonnet, E., Bour, O., Odling, N.E., Davy, P., Main, I., Cowie, P., Berkowitz, B.: Scaling of fracture systems in geological media. Rev. Geophys. 39(3), 347–383 (2001)CrossRefGoogle Scholar
  8. 8.
    Cassidy, R., McCloskey, J., Morrow, P.J.: Fluid velocity fields in 2D heterogeneous porous media: Empirical measurement and validation of numerical prediction. In: Shaw, R.P. (ed.) Understanding the Micro to Macro Behaviour of Rock-Fluid Systems, vol. 249, pp. 115–130. Geological Society London Special Publications (2005)Google Scholar
  9. 9.
    Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29, 47–65 (1979)CrossRefGoogle Scholar
  10. 10.
    Davy, P.: On the frequency-length distribution of the San Andreas fault system. J. Geophys. Res. 98, 12141–12151 (1993)CrossRefGoogle Scholar
  11. 11.
    Brown, S.R.: Fluid flow through rock joints: The effect of surface roughness. J. Geophys. Res. 92, 1337–1347 (1987)CrossRefGoogle Scholar
  12. 12.
    Power, W.L., Tullis, T.E., Brown, S.R., Boitnott, G.N., Scholz, C.H.: Roughness of natural fault surfaces. Geophys. Res. Lett. 14(1), 29–32 (1987)CrossRefGoogle Scholar
  13. 13.
    Power, W.L., Durham, W.B.: Topography of natural and artificial fractures in granitic rocks: Implications for studies of rock friction and fluid migration. Int. J. Rock Mech. Min. Sci. 34(6), 979–989 (1997)CrossRefGoogle Scholar
  14. 14.
    Bernhard, P., Hofmann, M., Schulthess, A., Steinmann, B.: Taking lithography to the third dimension. Chimia 48, 427–430 (1994)Google Scholar
  15. 15.
    Turcotte, D.L.: Fractals and Chaos in Geology and Geophysics, Cambridge University Press, Cambridge, pp. 73–94. (1993)Google Scholar
  16. 16.
    Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in FORTRAN 77: The Art of Scientific Computing, Cambridge University Press, Cambridge, pp. 992. (1992)Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Rachel Cassidy
    • 1
  • Philip J. Morrow
    • 2
  • John McCloskey
    • 3
  1. 1.Geophysics Research Group, School of Environmental SciencesUniversity of UlsterColeraineN. Ireland
  2. 2.School of Computing and Information Engineering,University of UlsterColeraineN. Ireland
  3. 3.Geophysics Research Group, School of Environmental SciencesUniversity of UlsterColeraineN. Ireland

Personalised recommendations