Advertisement

Estimation of a fluorescent lamp spectral distribution for color image in machine vision

  • Luis Galo CorzoEmail author
  • Jose Antonio Peñaranda
  • Peter Peer
Original Paper

Abstract

We present a technique to quickly estimate the Illumination Spectral Distribution (ISD) in an image illuminated by a fluorescent lamp. It is assumed that the object colors are a set of colors for which spectral reflectances are available (in our experiments we use spectral measurements of 12 colors checker chart), the sensitivities of the camera sensors are known and the camera response is linear. Thus, the ISD can be approximated by a finite linear combinations of a small number of basis functions.

Keywords

Machine vision Illumination spectral distribution Quadratic programming Constrained least square 

References

  1. 1.
    Maloney, L.T., Wandell, B.A.: Color constancy: A method for recovering surface spectral reflectance. Journal of the Optical Society of America, 3(1), 29–33, January (1986)Google Scholar
  2. 2.
    Finlayson, G.D., Drew, M.S., Funt, B.V.: Spectral sharpening: Sensor transformations for improved color constancy. Journal of the Optical Society of America. 11(5), 1553–1563 (1994)PubMedGoogle Scholar
  3. 3.
    Maloney, L.T.: Evaluation of linear models of surface spectral reflectance with small numbers of parameters. Journal of the Optical Society of America, 3(10, 1673–1683 (1986)PubMedCrossRefGoogle Scholar
  4. 4.
    Coleman, T.F. and Li, Y.: A reflective newton method for minimizing a quadratic function subject to bounds on some of the Variables, SIAM Journal on Optimization, 6(4), 1040–1058 (1996)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Conn, R., Gould, N.I.M., Toint, Ph.L.: Large-scale nonlinear constrained optimization: A current survey, in Algorithms for continuous optimization: the state of the art, 434, Kluwer Academic, (ed.) E. Spedicato, pp. 287–332, (1994)Google Scholar
  6. 6.
    Wyszecki, G. and Stiles, W.S.: Color science: Concepts and methods, quantitative data and formulas. Wiley, New York, 2nd edition, (1982)Google Scholar
  7. 7.
    Barnard, K., Funt, B.V.: Camera calibration for color research. Color Research and Application 27(3), 153–164 (2002)Google Scholar
  8. 8.
    Marszalec, E., Pietikäinen. M.: On line color camera calibration. IEEE Pattern Recognition, 11(5), 232–237 (1994)Google Scholar
  9. 9.
    Lee, R.L., Jr.: Colorimetric calibration of a video digitizing system: Algorithm and applications. Color Research and Application. 13, pp. 180–186 (1988)CrossRefGoogle Scholar
  10. 10.
    Peñaranda, J.A., Briones, L., Florez, J.: Color machine vision system for process control in the ceramic industry. SPIE, new image processing techniques and applications. Munich, 3101, 182–193 (1997)Google Scholar
  11. 11.
    The MathWorks inc, Optimization toolbox: Quadprog function. Available online: http://www.mathworks.com
  12. 12.
    Ohta, Y., Hayashi. Y.: Recovery of illuminant and surface colors from images based on the CIE Daylight. 3rd-ECCV, 801, 235–246 (1994)Google Scholar
  13. 13.
    Barnard, K.: Computational color constancy: Taking theory into practice. Masters Thesis, Simon Fraser University (1995)Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Luis Galo Corzo
    • 1
    Email author
  • Jose Antonio Peñaranda
    • 1
  • Peter Peer
    • 1
  1. 1.CEIT and Tecnun (University of Navarra)San SebastianSpain

Personalised recommendations