Advertisement

Machine Vision and Applications

, Volume 16, Issue 3, pp 177–188 | Cite as

Texture analysis based on local analysis of the Bidimensional Empirical Mode Decomposition

  • J. C. Nunes
  • S. Guyot
  • E. Deléchelle
Article

Abstract.

The main contribution of our approach is to apply the Hilbert-Huang Transform (which consists of two parts: (a) Empirical Mode Decomposition (EMD), and (b) the Hilbert spectral analysis) to texture analysis. The EMD is locally adaptive and suitable for analysis of non-linear or non-stationary processes. This one-dimensional decomposition technique extracts a finite number of oscillatory components or “well-behaved” AM-FM functions, called Intrinsic Mode Function (IMF), directly from the data. Firstly, we extend the EMD to 2D-data (i.e. images), the so called bidimensional EMD (BEMD), the process being called 2D-sifting process. The 2D-sifting process is performed in two steps: extrema detection by neighboring window or morphological operators and surface interpolation by radial basis functions or multigrid B-splines. Secondly, we analyse each 2D-IMF obtained by BEMD by studying local properties (amplitude, phase, isotropy and orientation) extracted from the monogenic signal of each one of them. The monogenic signal is a 2D-generalization of the analytic signal, where the Riesz Transform replaces the Hilbert Transform. The performance of this texture analysis method, using the BEMD and Riesz Transform, is demonstrated with both synthetic and natural images.

Keywords:

Texture analysis Empirical mode decomposition Surface interpolation Mathematical morphology Hilbert-Huang transform Riesz transform Monogenic signal Structure multi-vector 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amidror I (2002) Scattered data interpolation methods for electronic imaging systems: a survey. J Elect Imag 11(2):157-176Google Scholar
  2. 2.
    Barnhill R (1977) Representation and Approximation of Surfaces. In: Rice JR (ed) Mathematical Software III. Academic Press, New York, pp 68-119Google Scholar
  3. 3.
    Barthels RH, Beatty JC, Barsky BA (1987) An introduction to splines for use in Computer Graphics and Geometric Modeling. Morgan Kaufmann PublishersGoogle Scholar
  4. 4.
    Beucher S, Meyer F (1993) The morphological approach to segmentation: The watershed transformation. In: Dougherty ER (ed) Mathematical Morphology in Image Processing. Marcel Dekker, Inc., New York, NY, Chap 12, pp 433-481Google Scholar
  5. 5.
    Beucher S (2001) Geodesic reconstruction, saddle zones and hierarchical segmentation. Image Anal Stereol 20:137-141Google Scholar
  6. 6.
    Bovik AC, Clark M, Geisler WS (1990) Multichannel texture analysis using localized spatial filters. IEEE Trans Pattern Anal Mach Intell 12(1):55-73Google Scholar
  7. 7.
    Brodatz P (1966) Textures: a photographic album for artists and designers. Dover, New YorkGoogle Scholar
  8. 8.
    Buhmann MD (2000) Radial Basis Functions. Acta Numerica, pp 1-38Google Scholar
  9. 9.
    Bülow T (1999) Hypercomplex Spectral Signal Representations for the Processing and Analysis of Images. Thesis, Christian-Albrechts-Universität zu Kiel, Institut für Informatik und Praktische MathematikGoogle Scholar
  10. 10.
    Bülow T, Sommer G (2001) Hypercomplex signals: a novel extension of the analytic signal to the multidimensional case. IEEE Trans Signal Process 49(11):2844-2852Google Scholar
  11. 11.
    Carr JC, FrightWR, Beatson RK (1997) Surface Interpolation with Radial Basis Functions for Medical Imaging. J IEEE Trans on Medical Imag 16(1):96-107Google Scholar
  12. 12.
    Cesmeli E, Wang DL (1997) Texture segmentation using Gaussian Markov random fields and LEGION. The 1997 IEEE International Conference on Neural Networks, vol 3, Houston, Tex., 9-12 June. Institute of Electrical and Electronics Engineers, New YorkGoogle Scholar
  13. 13.
    Chen CC, DaponteJS, Fox MD (1989) Fractal feature analysis and classification in medical imaging. IEEE Trans Med Imag 8(2):133-142Google Scholar
  14. 14.
    Daehlen M, Skyth V (1989) Modelling Non-rectangular Surfaces using Box-splines. In: Handscomb DC (ed) Mathematics of Surfaces III, pp 287-300Google Scholar
  15. 15.
    Daugman J (1988) Complete discrete 2D Gabor transform by neural networks for image analysis and compression. IEEE Trans Acoust Speech Signal Process 36:1169-1179Google Scholar
  16. 16.
    Deléchelle E, Nunes JC, Lemoine J (2003) Empirical Mode Decomposition synthesis of fractional processes in 1D and 2D dimensions. Image and Vision Computing (submitted)Google Scholar
  17. 17.
    Duchon J (1977) Splines minimizing rotation-invariant semi-norms in Sobolev spaces. In: Schempp W, Zeller K (eds) Constructive Theory of functions of several variables. Springer, Berlin, pp 85-100Google Scholar
  18. 18.
    Duits R, Florack LMJ, de Graaf J, ter Haar Romeny BM (2004) On the Axioms of scale-space theory. J Imag Vis 20(3):267-298Google Scholar
  19. 19.
    Dunn D, Higgins WE, Wakeley J (1994) Texture segmentation using 2-D Gabor elementary functions. IEEE Trans Pattern Anal Mach Intell 16(2):130-149Google Scholar
  20. 20.
    Eom KB (1999) Segmentation of monochrome and color textures using moving average modeling approach. Image Vision Comput 17(3):231-242Google Scholar
  21. 21.
    Felsberg M, Sommer G (2001) The monogenic signal. IEEE Trans Signal Process 49, DecemberGoogle Scholar
  22. 22.
    Felsberg M, Sommer G (2001) Structure multivector for local analysis of images. In: Klette R, Huang T, Gimelfarb G (eds) Multi-image analysis, vol 2032 of LNCS. Proc. Dagstuhl Workshop on Theoretical Foundations of Computer Vision, Springer-Verlag, Berlin, pp 93-104Google Scholar
  23. 23.
    Felsberg M, Sommer G (2002) The poisson scale-space: A unified approach to phase-based image processing in scale-space. Technical Report Number 0208, Christian-Albrechts-Universität zu Kiel, Institut für Informatik und Praktische Mathematik, AugustGoogle Scholar
  24. 24.
    Felsberg M, Sommer G (2004) The monogenic scale-space: A unifying approach to phase-based image processing in scale-space. J Math Imag Vis 21:5-26Google Scholar
  25. 25.
    Felsberg M (2002) Low-Level Image Processing with the Structure Multivector. PhD thesis, Institute of Computer Science and Applied Mathematics Christian-Albrechts-University of Kiel, TR no. 0203, available at http://www.informatik.uni-kiel.de/reports/2002/0203.htmlGoogle Scholar
  26. 26.
    Flandrin P, Gonçalvés P (2004) Empirical Mode Decompositions as a Data-Driven Wavelet-Like Expansions. Int J Wavelets, Multires Info Proc (to appear)Google Scholar
  27. 27.
    Flandrin P, Gonçalvés P, Rilling G (2004) Empirical Mode Decomposition as Filter Bank. IEEE Sig Proc Lett 11(2):112-114Google Scholar
  28. 28.
    Forsey DR, Bartels RH (1995) Surface Fitting with Hierarchical Splines. ACM Trans Graph 14(2):134-161Google Scholar
  29. 29.
    Franke R, Nielson GM (1991) Scattered Data Interpolation and Applications: A Tutorial and Survey. In: Hagen H, Roller D (eds) Geometric Modelling: Methods and Their Application. Springer, Berlin, pp 131-160Google Scholar
  30. 30.
    Glassner A (1995) Principles of Digital Image Synthesis. Morgan Kaufmann, San Francisco, 1995Google Scholar
  31. 31.
    Gimel’farb G (1999) Image textures and Gibbs random fields. Kluwer Academic, DordrechtGoogle Scholar
  32. 32.
    Granlund GH, Knutsson H (1995) Signal Processing for Computer Vision. Kluwer Academic Publishers, DordrechtGoogle Scholar
  33. 33.
    Hahn SL (1996) Hilbert transforms in signal processing Artech. House, Boston, LondonGoogle Scholar
  34. 34.
    Hahn SL (1992) Multidimensional complex signals with single-orthant spectra Proc. IEEE, vol. 80, pp 1287-1300Google Scholar
  35. 35.
    Hansen M (1998) Stereosehen - ein verhaltensbasierter Ansatz. PhD thesis, Inst. f. Inf. u. Prakt. Math. der Christian-Albrechts-Universität KielGoogle Scholar
  36. 36.
    Haralick R (1979) Statistical and structural approaches to texture. IEEE Proc 67(5):786-804Google Scholar
  37. 37.
    Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 3(6):610-621Google Scholar
  38. 38.
    Hardy RL (1971) Multiquadratic equations of topography and other irregular surfaces. J Geophys Res 76(8):1905-1915Google Scholar
  39. 39.
    Hoppe H, DeRose T, Duchamp T, Halstead M, Jin M, McDonald J, Schweitzer J, Stuetzle W (1994) Piecewise Smooth Surface Reconstruction. Computer Graphics (SIGGRAPH ‘94 Conf. Proc.), pp 295-302Google Scholar
  40. 40.
    Hormigo J, Cristóbal G (1998) High resolution spectral analysis of images using the pseudo-Wigner distribution. IEEE Trans Signal Process 46(6):1757-1763Google Scholar
  41. 41.
    Hoschek J, Lasser D (1993) Computer Aided Geometric Design. A.K. Peters, Ltd., Wellesley, Mass.Google Scholar
  42. 42.
    Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen N-C, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis. Proc Roy Soc Lond, Ser. A 454:903-995Google Scholar
  43. 43.
    Huang NE, Shen Z, Long SR (1999) A new view of nonlinear water waves: the Hilbert spectrum. Annu Rev Fluid Mech 31:417-457Google Scholar
  44. 44.
    Huang NE, Wu ML, Qu W, Long SR, Shen SSP (2003) Applications of Hilbert-Huang transform to non-stationary financial time series analysis. Appl Stoch Models Business Ind 19:245-268Google Scholar
  45. 45.
    Jain AK, Farrokhnia F (1991) Unsupervised texture segmentation using Gabor filters. Pattern Recogn 24(12):1167-1186Google Scholar
  46. 46.
    Jähne B (1997) Digitale Bildverarbeitung. Springer, Berlin, 1997Google Scholar
  47. 47.
    Julesz B, Bergen JR (1983) Textons, the fundamental elements in preattentive vision and perception of textures. Bell Syst Tech J 62(6):1619-1645Google Scholar
  48. 48.
    Kovesi P (1999) Image Features From Phase Congruency. Videre: A Journal of Computer Vision Research MIT Press. Volume 1, Number 3, SummerGoogle Scholar
  49. 49.
    Kovesi P (1996) Invariant Measures of Image Features from Phase Information. PhD thesis, University of Western AustraliaGoogle Scholar
  50. 50.
    Laine A, Fan J (1993) An adaptive approach for texture segmentation by multi-channel wavelet frames. Technical report TR-93-025, Center for Computer Vision and Visualization, University of FloridaGoogle Scholar
  51. 51.
    Lee S, Wolberg G, Shin SS (1997) Scattered data interpolation with multilevel B-plines. IEEE Trans Vis Comp Graph 3(3)Google Scholar
  52. 52.
    Linderhed A (2002) 2D empirical mode decompositions in the spirit of image compression. Wavelet and Independent Component Analysis Applications IX, SPIE Proceedings Vol. 4738, April 2002, pp 1-8Google Scholar
  53. 53.
    Linderhed A (2004) Image compression based on empirical mode decomposition. Uppsala, March 11-12, Proc. of SSAB 04 Symp. on Image Analysis, pp 110-113Google Scholar
  54. 54.
    Linderhed A (2004) Variable Sampling of the Empirical Mode Decomposition of Two-Dimensional Signals. Special issue on “Sampling and Frames in Wavelet Theory and Time-Frequency Analysis” of the International Journal of Wavelets, Multiresolution and Information Processing, preprintGoogle Scholar
  55. 55.
    Liu X, Wang D (2000) Texture classification using spectral histograms. Electronic report 25 (OSU-CISRC-7/2000-TR17). http://citeseer.nj.nec.com/liu00texture.html. Cited 12 September 2002Google Scholar
  56. 56.
    Liu Z, Peng S (2004) Estimation of Image Fractal Dimension Based on Empirical Mode Decomposition. Advanced Concepts for Intelligent Vision Systems (ACIVS), Aug. 31-Sept., Brussels, BelgiumGoogle Scholar
  57. 57.
    Liu Z, Peng S (2004) Texture segmentation using directional Empirical Mode Decomposition. IEEE International Conference on Image Processing (ICIP) October 24-27, SingaporeGoogle Scholar
  58. 58.
    Livens S, Van de Wouwer G (1997) Wavelets for texture analysis: an overview. Proceedings of the sixth international conference on Image Processing and its Applications (IPA’97), Dublin, IrelandGoogle Scholar
  59. 59.
    Mallat S (1996) Wavelets for a vision. Proc IEEE 84(4):604-614Google Scholar
  60. 60.
    Materka A, Strzelecki M (1998) Texture analysis methods: a review. COST B11 report, Technical University of LodzGoogle Scholar
  61. 61.
    Meyer Y (1993) Wavelets: algorithms and applications. SIAM Press, PhiladelphiaGoogle Scholar
  62. 62.
    Nielson GM (1993) Scattered data modeling. IEEE Computer Graphics and Applications, pp 60-70Google Scholar
  63. 63.
    Nunes JC (2003) Analyse multiéchelle d’images. Application á l’angiographie rétinienne et á la DMLA. Thesis, Université Paris 12, FranceGoogle Scholar
  64. 64.
    Nunes JC, Bouaoune Y , Deléchelle E, Niang O, Bunel P (2003) Image analysis by bidimensional empirical mode decomposition. Image Vis Comput 21:1019-1026Google Scholar
  65. 65.
    Nunes JC, Niang O, Bouaoune Y, Deléchelle E, Bunel P (2003) Texture analysis based on the Bidimensional Empirical Mode Decomposition with Gray-Level Co-occurrence models. ISSPA’2003 Seventh International Symposium on Signal Processing and its Applications, (Paris, France), 1-4 JulyGoogle Scholar
  66. 66.
    Nunes JC, Niang O, Bouaoune Y, Deléchelle E, Bunel P (2003) Bidimensional Empirical Mode Decomposition modified for texture analysis. SCIA’2003 13th Scandinavian Conference on Image Analysis, (Göteborg, Sweden), June 29-July 2 2003Google Scholar
  67. 67.
    Nunes JC, Niang O, Bouaoune Y, Deléchelle E, Bunel P (2003) Décomposition Empirique Multimodale Bidimensionnelle Modifiée pour l’analyse d’images. GRETSI’2003 - 19éme Colloque GRETSI sur le traitement du signal et des images, (Paris, France), 8-11 septembreGoogle Scholar
  68. 68.
    Oonincx PJ (2002) Empirical mode decomposition: a new tool for S-wave detection. CWI Reports of Probability, Networks and Algorithms (PNA), PNA-R0203Google Scholar
  69. 69.
    Osten W (1991) Digitale Verarbeitung und Auswertung von Interferenzbildern. Akademie Verlag, Berlin, 1991Google Scholar
  70. 70.
    Pentland AP (1984) Fractal-based description of natural scenes. IEEE Trans Pattern Anal Mach Intell 6:661-674Google Scholar
  71. 71.
    Pickett RM (1970) Visual analyses of texture in the detection and recognition of objects. Lipkin BS, Rosenfeld A (eds) Picture processing and psychopictorics. Academic Press, New YorkGoogle Scholar
  72. 72.
    Pichler O, Teuner A, Hosticka BJ (1996) A comparison of texture feature extraction using adaptive Gabor filtering pyramidal and tree structured wavelet transforms. Pattern Recogn 29(5):733-742Google Scholar
  73. 73.
    Qin H, Terzopoulos D (1996) D-NURBS: A Physics-Based Framework for Geometric Design. IEEE Transactions on Visualization and Computer Graphics 2(1):85-96Google Scholar
  74. 74.
    Randen T, Husoy JH (1999) Filtering for texture classification: a comparative study. IEEE Trans Pattern Anal Mach Intell 21:291-310Google Scholar
  75. 75.
    Reed TR, Wechesler H (1990) Segmentation of textured images and Gestalt organization using spatial/spatial-frequency representations. IEEE Trans Pattern Anal Mach Intell 12:1-12Google Scholar
  76. 76.
    Reisfeld D (1996) Constrained phase congruency: simultaneous detection of interest points and of their scales. Computer Vision and Pattern Recognition, 1996. Proceedings CVPR ‘96, IEEE Computer SocietyGoogle Scholar
  77. 77.
    Sarkar N, Chaudhuri BB (1992) An efficient approach to estimate fractal dimension of textural images. Pattern Recogn 25(9):1035-1041Google Scholar
  78. 78.
    Schmitt FJM, Barsky BB, Du W (1986) An Adaptive Subdivision Method for Surface-Fitting from Sampled Data. Computer Graphics (SIGGRAPH ‘86 Conf. Proc.), pp 179-188Google Scholar
  79. 79.
    Schumaker L (1976) Fitting Surfaces to Scattered Data. In: Chui C, Schumaker L, Lorentz G (eds) Approximation Theory II, Wiley, New York, pp 203-268Google Scholar
  80. 80.
    http://www.ks.informatik.uni-kiel.de/~visatecGoogle Scholar
  81. 81.
    Shepard D (1968) A two dimensional interpolation function for irregularly spaced data. Proceedings of ACM 23rd National Conference, pp 517-524Google Scholar
  82. 82.
    Sommer G, Bülow T, Pallek D (2000) Riesz transforms for the isotropic estimation of the local phase of moire interferograms. In: Perwass Ch, Sommer G, Krüger N (eds) 22. Symposium für Mustererkennung, DAGM 2000, pp 333-340. Springer, Kiel, 2000Google Scholar
  83. 83.
    Stark H (1971) An extension of the Hilbert transform product theorem. Proc IEEE 59:1359-1360Google Scholar
  84. 84.
    Stein E, Weiss G (1971) Introduction to Fourier analysis on euclidian spaces. Princeton University Press, New Jersey, 1971Google Scholar
  85. 85.
    Tomita F, Tsuji S (1990) Computer analysis of visual textures. Kluwer Academic, Boston.Google Scholar
  86. 86.
    Tuceryan M, Jain AK (1998) Texture analysis. In: Chen CH, Pau LF, Wang PSP (eds) The handbook of pattern recognition and computer vision, 2nd edn. World Scientific Publishing, SingaporeGoogle Scholar
  87. 87.
    Unser M (1999) Splines: a perfect fit for signal and image processing. IEEE Signal Processing Magazine (11):22-38Google Scholar
  88. 88.
    Unser M (1995) Texture classification and segmentation using wavelet frames. IEEE Trans Image Process 4(11):1549-1560Google Scholar
  89. 89.
    Unser M, Aldroubi A, Eden M (1993) B-Spline Signal Processing: Part I - Theory. IEEE Trans Signal Process 41(2):821-833Google Scholar
  90. 90.
    Unser M, Aldroubi A, Eden M (1993) B-Spline Signal Processing: Part II-Efficient Design and Applications. IEEE Trans Signal Process 41(2):821-833Google Scholar
  91. 91.
    Vincent L (1993) Morphological grayscale reconstruction in image analysis: applications and efficient algorithms. Technical report 91-16, Harvard Robotics Laboratory, November 1991. IEEE Trans Image Process 2(2):176-201Google Scholar
  92. 92.
    Wickerhauser MV (1994) Adapted wavelet analysis from theory to software. IEEE Press, Los AlamitosGoogle Scholar
  93. 93.
    Yang Z, Qi D, Yang L (2004) Signal Period Analysis Based on Hilbert-Huang Transform and Its Application to Texture Analysis (Preprint). http://www.ims.nus.edu.sg/preprints/2004-38.pdfGoogle Scholar
  94. 94.
    Zhang W, Tang Z, Li J (1998) Adaptive Hierarchical B-Spline Surface Approximation of Large-Scale Scattered Data. In Proc. Pacific Graphics ‘98, pp 8-16Google Scholar
  95. 95.
    Zhou J, Patrikalakis NM, Tuohy ST, Ye X (1997) Scattered Data Fitting with Simplex Splines in Two and Three Dimensional Spaces. The Vis Comput 13(7):295-315Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2005

Authors and Affiliations

  1. 1.Laboratoire d’Etude et de Recherche en Instrumentation, Signaux et Systémes (LERISS, E.A. 412)Université Paris XII, Val de MarneCréteil CedexFrance

Personalised recommendations