Advertisement

Machine Vision and Applications

, Volume 16, Issue 1, pp 41–46 | Cite as

Brand identification using Gaussian derivative histograms

  • Daniela HallEmail author
  • Fabien Pélisson
  • Olivier Riff
  • James L. Crowley
Special issue on ICVS 2003

Abstract.

In this article, we describe a module for the identification of brand logos from video data. A model for the visual appearance of each logo is generated from a small number of sample images using multidimensional histograms of scale-normalized chromatic Gaussian receptive fields. We compare several identification techniques based on multidimensional histograms. Each of the methods displays high recognition rates and can be used for logo identification. Our method for calculating scale-normalized Gaussian receptive fields has linear computational complexity and is thus well adapted to a real-time system. However, with the current generation of microprocessors we obtain at best only two images per second when processing a full PAL video stream. To accelerate the process, we propose an architecture that combines fast detection, reliable identification, and fast tracking for speedup. The resulting real-time system is evaluated using video streams from sports Formula 1 races and football.

Keywords

Recognition Rate Current Generation Identification Technique Video Stream Video Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal S, Roth D (2002) Learning a sparse reprsentation for object detection. In: European conference on computer vision, pp 113-130Google Scholar
  2. 2.
    Belongie S, Malik J, Puzicha J (2002) Shape matching and object recognition using shape context. IEEE Trans Pattern Anal Mach Intell 24(4):509-522CrossRefGoogle Scholar
  3. 3.
    Crowley JL, Riff O, Piater J (2002) Fast computation of characteristic scale using a half octave pyramid. In: Workshop on cognitive computing, Zurich, SwitzerlandGoogle Scholar
  4. 4.
    Freeman WT, Pasztor EC (1999) Learning low-level vision. In: International conference on computer vision, pp 1182-1189Google Scholar
  5. 5.
    Hall D, Colin de Verdiére V, Crowley JL (2000) Object recognition using coloured receptive fields. In: European conference on computer vision, pp 164-177 Dublin, IrelandGoogle Scholar
  6. 6.
    Lades M, Vorbrüggen JC, Buhmann J, Lange J, von der Mahlsburg C, Würz RP, Konen W (1993) Distortion invariant object recognition in the dynamic link architecture. Trans Comput 42(3):300-311CrossRefGoogle Scholar
  7. 7.
    Lindeberg T (1998) Feature detection with automatic scale selection. Int J Comput Vision 30(2):79-116CrossRefGoogle Scholar
  8. 8.
    Lowe DG (1999) Object recognition from local scale-invariant features. In: International conference on computer vision, pp 1150-1157Google Scholar
  9. 9.
    Osuna E, Freund R, Girosi F (1997) Training support vector machines: an application to face detection. In: IEEE conference on computer vision and pattern recognition, Puerto Rico, pp 130-136Google Scholar
  10. 10.
    Rao RPN, Ballard DH (1995) An active vision architecture based on iconic representations. Artif Intell 78(1-2):461-505Google Scholar
  11. 11.
    Schiele B, Crowley JL (2000) Recognition without correspondence using multidimensional receptive field histograms. Int J Comput Vision 36(1):31-50CrossRefGoogle Scholar
  12. 12.
    Schiele B, Pentland A (1999) Probabilistic object recognition and localization. In: International conference on computer vision, Corfu, Greece, pp 177-182Google Scholar
  13. 13.
    Schmid C, Mohr R (1997) Local greyvalue invariants for image retrieval. IEEE Trans Pattern Anal Mach Intell 19(5):530-534CrossRefGoogle Scholar
  14. 14.
    Schwerdt K, Crowley JL (2000) Robust face tracking using color. In: International conference on automatic face and gesture recognition, pp 90-95Google Scholar
  15. 15.
    Swain MJ, Ballard DH (1991) Color indexing. Int J Comput Vision 7(1):11-32Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  • Daniela Hall
    • 1
    Email author
  • Fabien Pélisson
    • 1
  • Olivier Riff
    • 1
  • James L. Crowley
    • 1
  1. 1.PRIMA Group, Laboratory GRAVIR-IMAGINRIA Rhône-AlpesSt. IsmierFrance

Personalised recommendations