Intensive Care Medicine

, Volume 24, Issue 11, pp 1199–1208 | Cite as

Nitric oxide inhibits tissue factor synthesis, expression and activity in human monocytes by prior formation of peroxynitrite

  • M. Gerlach
  • D. Keh
  • G. Bezold
  • S. Spielmann
  • I. Kürer
  • R. U. Peter
  • K. J. Falke
  • H. Gerlach
EXPERIMENTAL

Abstract

Objective: Nitric oxide (NO) has antithrombotic properties by regulating platelet function, whereas direct effects on plasmatic coagulation are rarely described. In sepsis and inflammation, when synthesis of NO, oxygen radicals and toxic metabolites is crucial, the expression of tissue factor (TF) on monocytes stimulated by lipopolysaccharides (LPS) induces intravascular coagulation. This study was performed to examine the influence of NO and the NO-dependent metabolite peroxynitrite on LPS-induced TF expression and activity in human monocytes. Design: Experimental study. Setting: Laboratory for cell biology. Methods: Human peripheral blood mononuclear cells were isolated from buffy coats by gradient centrifugation. The NO-releasing compounds SIN1 and NOC18 were used under different conditions. TF antigen was assayed by flow cytometry, and its activity by a clotting assay. TF-mRNA was measured by reverse transcriptase polymerase chain reaction (RT-PCR-ELISA). Measurements and results: Whereas NOC18, a pure NO donor, had no effect, SIN1, releasing both NO and superoxide (O2), reduced TF expression and activity in a dose- and time-dependent manner; superoxide dismutase (SOD) reversed the SIN1-mediated effect. Adding the O2-deliberating system hypoxanthin/xanthin oxidase (which had no significant effect per se) to NOC18, or using the NO and O2 reaction product peroxynitrite resulted in a reduction of TF expression. RT-PCR-ELISA indicated upregulation of TF-mRNA by SIN1 with a peak at 500 μM; higher doses had less effect. Conclusion: These data demonstrate an influence of NO on LPS-induced TF expression in monocytes by prior formation of peroxynitrite; furthermore, the balance between NO and O2 seems to play a crucial role.

Key words Nitric oxide Peroxynitrite Tissue factor Oxygen radicals Monocytes Coagulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • M. Gerlach
    • 1
  • D. Keh
    • 1
  • G. Bezold
    • 2
  • S. Spielmann
    • 1
  • I. Kürer
    • 1
  • R. U. Peter
    • 3
  • K. J. Falke
    • 1
  • H. Gerlach
    • 1
  1. 1.Department of Anesthesiology and Critical Care Medicine, Charité-Virchow-Clinic, Humboldt University, Augustenburger Platz 1, D-13 353 Berlin, Germany e-mail: herwig.gerlach@charite.de Tel. + 49 30 450 51001 Fax + 49 30 450 51900DE
  2. 2.Institute of Radiobiology, Federal Armed Forces Medical Academy, Munich, GermanyDE
  3. 3.Department of Dermatology, University Clinic, Ulm, GermanyDE

Personalised recommendations