Intensive Care Medicine

, Volume 24, Issue 4, pp 286–295

Cardiac dysfunction in sepsis: new theories and clinical implications

  • R. M. Grocott-Mason
  • A. M. Shah
Review

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Parrillo JE (1993) Pathogenetic mechanisms of septic shock. N Engl J Med 28:1471–1477CrossRefGoogle Scholar
  2. 2.
    Bone RC (1996) Toward a theory regarding the pathogenesis of the systemic inflammatory response syndrome: what we do and do not know about cytokine regulation. Crit Care Med 24:163–172PubMedCrossRefGoogle Scholar
  3. 3.
    Parker MM, Shelhamer JH, Bacharach SL, Green MV, Natanson C, Frederick TM, Damske BA, Parrillo JE (1984) Profound but reversible myocardial depression in patients with septic shock. Ann Intern Med 100: 483–490PubMedGoogle Scholar
  4. 4.
    Ellrodt AG, Riedinger MS, Kimchi A, Berman DS, Maddahi J, Swan HJC, Murata GH (1985) Left ventricular performance in septic shock: reversible segmental and global abnormalities. Am Heart J 110: 402–409PubMedCrossRefGoogle Scholar
  5. 5.
    Ognibene FP, Parker MM, Natanson C, Shelhamer JH, Parrillo JE (1988) Depressed left ventricular performance; response to volume infusion in patients with sepsis and septic shock. Chest 93: 903–910PubMedCrossRefGoogle Scholar
  6. 6.
    Natanson C, Danner RL, Fink MP, MacVittie TJ, Walker RI, Conklin JJ, Parrillo JE (1988) Cardiovascular performance with Escherichia coli challenges in a canine model of human sepsis. Am J Physiol 254: H558-H569PubMedGoogle Scholar
  7. 7.
    Parker MM, Suffredini AF, Natanson C, Ognibene FP, Shelhamer JH, Parrillo JE (1989) Responses of left ventricular function in survivors and nonsurvivors of septic shock. J Crit Care 4:19–25CrossRefGoogle Scholar
  8. 8.
    Parker MM, McCarthy KE, Ognibene FP, Parrillo JE (1990) Right ventricular dysfunction of dilatation, similar to left ventricular changes, characterize the cardiac depression of septic shock in humans. Chest 97:126–131PubMedCrossRefGoogle Scholar
  9. 9.
    Poelaert J, Declerck C, Vogelaers D, Colardyn F, Visser CA (1997) Left ventricular systolic and diastolic function in septic shock. Intensive Care Med 23: 553–560PubMedCrossRefGoogle Scholar
  10. 10.
    Cunnion RE, Schaer GL, Parker MM, Natanson C, Parrillo JE (1986) The coronary circulation in human septic shock. Circulation 73: 637–644PubMedGoogle Scholar
  11. 11.
    Dhainaut J-F, Huyghebaert M-F, Monsallier JF, Lefevre G, Dall’Ava-Santucci J, Brunet F, Villemont D, Carli A, Raichvarg D (1987) Coronary hemodynamics and myocardial metabolism of lactate, free fatty acids, glucose, and ketones in patients with septic shock. Circulation 75: 533–541PubMedGoogle Scholar
  12. 12.
    Van Lambalgen AA, van Kraats AA, Mulder MF, Teerlink T, van den Bos GC (1994) High energy phosphates in heart, liver, and skeletal muscle of endotoxemic rats. Am J Physiol 266: H1581-H1587PubMedGoogle Scholar
  13. 13.
    Hinshaw LB (1996) Sepsis/septic shock: participation of the microcirculation: an abbreviated review. Crit Care Med 24: 1072–1078PubMedCrossRefGoogle Scholar
  14. 14.
    Goddard CM, Allard MF, Hogg JC, Walley KR (1996) Myocardial morphometric changes related to decreased contractility after endotoxin. Am J Physiol 270: H1446-H1452PubMedGoogle Scholar
  15. 15.
    Shah AM, Grocott-Mason RM, Pepper CB, Mebazaa A, Henderson AH, Lewis MJ, Paulus WJ (1996) The cardiac endothelium: cardioactive mediators. Prog Cardiovasc Dis 39: 263–284PubMedCrossRefGoogle Scholar
  16. 16.
    Lefer A, Rovetto M (1970) Influence of a myocardial depressant factor on physiologic properties of cardiac muscle. Proc Soc Exp Biol 134: 269–273Google Scholar
  17. 17.
    Carli A, Auclair MC, Benassayag C, Nunez E (1981) Evidence for an early lipid soluble cardiodepressant factor in rat serum after a sublethal dose of endotoxin. Circ Shock 8: 301–312PubMedGoogle Scholar
  18. 18.
    Parrillo JE, Burch C, Shelhamer JH, Parker MM, Natanson C, Schuette W (1985) A circulating myocardial depressant substance in humans with septic shock. J Clin Invest 76:1539–1553PubMedCrossRefGoogle Scholar
  19. 19.
    Kumar A, Thota V, Dee L, Olson J, Uretz E, Parrillo JE (1996) Tumour necrosis factor alpha and interleukin 1 beta are responsible for in vitro myocardial cell depression induced by human septic shock serum. J Exp Med 183: 949–958PubMedCrossRefGoogle Scholar
  20. 20.
    Suffredini AF, Fromm RE, Parker MM, Brenner M, Kovacs JA, Wesley RA, Parrillo JE (1989) The cardiovascular response of normal humans to the administration of endotoxin. N Engl J Med 321: 280–287PubMedGoogle Scholar
  21. 21.
    Danner RL, Elin RJ, Hoseini JM, Wesley RA, Reilly JM, Parrillo JE (1988) Endotoxemia in human septic shock. Chest 99:169–175CrossRefGoogle Scholar
  22. 22.
    Granton JT, Goddard CM, Allard MF, van Eeden S, Walley KR (1997) Leukocytes and decreased left ventricular contractility during endotoxaemia in rabbits. Am J Respir Crit Care Med 155:1977–1983PubMedGoogle Scholar
  23. 23.
    Muller-Werdan U, Pfeifer A, Hubner G, Seliger C, Reithmann C, Rupp H, Werdan K (1997) Partial inhibition of protein synthesis by Pseudomonas exotoxin A deranges catecholamine sensitivity of cultured rat heart myocytes. J Mol Cell Cardiol 29:799–811PubMedCrossRefGoogle Scholar
  24. 24.
    Kwiatkowska-Patzer B, Patzer JA, Heller LJ (1993) Pseudomonas aeruginosa exotoxin A enhances automaticity and potentiates hypoxic depression of isolated rat hearts. Proc Soc Exp Biol Med 202:377–383PubMedGoogle Scholar
  25. 25.
    Finkel MS, Oddis CV, Jacob TD, Watkins SC, Hattler BG, Simmons RL (1992) Negative inotropic effects of cytokines on the heart mediated by nitric oxide. Science 257: 387–389PubMedCrossRefGoogle Scholar
  26. 26.
    Goldhaber JL, Kim KH, Natterson PD, Lawrence T, Yang P, Weiss JN (1996) Effects of TNF-α on [Ca2+]; and contractility in isolated adult rabbit ventricular myocytes. Am J Physiol 271: H1449-H1455PubMedGoogle Scholar
  27. 27.
    Yokoyama T, Vaca L, Rossen RD, Durante W, Hazarika P, Mann DL (1993) Cellular basis for the negative inotropic effects of tumor necrosis factor-alpha in the adult mammalian heart. J Clin Invest 92:2303–2312PubMedCrossRefGoogle Scholar
  28. 28.
    Liu S, Schreur KD (1995) G protein-mediated suppression of L-type Ca current by interleukin-1 ß in cultured rat ventricular myocytes. Am J Physiol 268: C339-C349PubMedGoogle Scholar
  29. 29.
    Tracey KJ, Beutler B, Lowry SF, Merryweather J, Wolpe S, Milsark IW, Hariri RJ, Fahey TJ, Zentella A, Albert JD, Shires T, Cerami A (1986) Shock and tissue injury induced by recombinant human cachectin. Science 234: 470–474PubMedCrossRefGoogle Scholar
  30. 30.
    Natanson C, Eichenholz PW, Danner RL, Eichacker PQ, Hoffman WD, Kuo GC, Banks SM, MacVittie TJ, Parrillo JE (1989) Endotoxin and tumor necrosis factor challenges in dogs simulate the cardiovascular profile of human septic shock. J Exp Med 169: 823–832PubMedCrossRefGoogle Scholar
  31. 31.
    Tracey KJ, Fong Y, Hesse DG, Manogue KR, Lee AT, Kuo GC, Lowry SF, Cerami A (1987) Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature 330: 662–664PubMedCrossRefGoogle Scholar
  32. 32.
    Kapadia S, Lee J, Torre-Amione G, Birdsall HH, Ma TS, Mann DL (1995) Tumor necrosis factor-alpha gene and protein expression in adult feline myocardium after endotoxin administration. J Clin Invest 96:1042–1052PubMedCrossRefGoogle Scholar
  33. 33.
    de Werra I, Jaccard C, Corradin SB, Chiolero R, Yersin B, Gallati H, Assicot M, Bohuon C, Baumgartner J-D, Glausser MP, Heumann D (1997) Cytokines, nitrite/nitrate, soluble tumor necrosis factor receptors, and procalcitonin concentrations: comparisons in patients with septic shock, cardiogenic shock and bacterial pneumonia. Crit Care Med 25: 607–613PubMedCrossRefGoogle Scholar
  34. 34.
    Habib FM, Springall DR, Davies GJ, Oakley CM, Yacoub MH, Polak JM (1996) Tumor necrosis factor and inducible nitric oxide synthase in dilated cardiomyopathy. Lancet 347:1151–1155PubMedCrossRefGoogle Scholar
  35. 35.
    Satoh M, Nakumura M, Tamura G, Makita S, Segawa I, Tashiro A, Satodate R, Hiramori K (1997) Inducible nitric oxide synthase and tumor necrosis factor-alpha in myocardium in human dilated cardiomyopathy. J Am Coll Cardiol 29:716–724PubMedCrossRefGoogle Scholar
  36. 36.
    Ferrari R, Bachetti T, Confortini R, Opasich C, Febo O, Corti A, Cassani G, Visioli O (1995) Tumor necrosis factor soluble receptors in patients with various degrees of congestive heart failure. Circulation 92:1479–1486PubMedGoogle Scholar
  37. 37.
    Diez FL, Nieto ML, Fernandez-Gallardo S, Gijon MA, Crespo MS (1989) Occupancy of platelet receptors for platelet-activating factor in patients with septicaemia. J Clin Invest 83:1733–1740CrossRefGoogle Scholar
  38. 38.
    Kenzora JL, Perez JE, Bergmann SR, Lange LG (1984) Effects of acetyl glyceryl ether of phosphorylcholine (platelet activating factor) on ventricular preload, afterload, and contractility in dogs. J Clin Invest 74:1193–1203PubMedCrossRefGoogle Scholar
  39. 39.
    Yamanaka S, Iwao H, Yukimura T, Kim S, Miura K (1993) Effect of the platelet-activating factor antagonist, TCV-309, and the cyclo-oxygenase inhibitor, ibuprofen, on the haemodynamic changes in canine experimental endotoxic shock. Br J Pharmacol 110:1501–1507PubMedGoogle Scholar
  40. 40.
    Herbertson MJ, Werner HA, Walley KR (1997) Platelet-activating factor antagonism improves ventricular contractility in endotoxaemia. Crit Care Med 25:221–226PubMedCrossRefGoogle Scholar
  41. 41.
    Liu SF, Newton R, Evans TW, Barnes PJ (1996) Differential regulation of cyclo-oxygenase-1 and cyclo-oxygenase-2 gene expression by lipopolysaccharide treatment in the rat. Clin Sei 90: 301–306Google Scholar
  42. 42.
    Herbertson MJ, Werner HA, Studer W, Russell JA, Walley KR (1996) Decreased left ventricular contractility during porcine endotoxemia is not prevented by ibuprofen. Crit Care Med 24: 815–819PubMedCrossRefGoogle Scholar
  43. 43.
    Bernard GR, Wheeler AP, Ibuprofen in Sepsis Study Group (1997) The effects of ibuprofen on the physiology and survival of patients with sepsis. N Engl J Med 336: 912–918PubMedCrossRefGoogle Scholar
  44. 44.
    Shah AM, Mebazaa A, Wetzel RC, Lakatta EG (1994) Novel cardiac myofilament desensitizing factor released by endocardial and vascular endothelial cells. Circulation 89: 2492–2497PubMedGoogle Scholar
  45. 45.
    Pepper CB, Lang D, Lewis MJ, Shah AM (1995) Endothelial inhibition of myofilament calcium response in intact cardiac myocytes. Am J Physiol 269: H1538-H1544PubMedGoogle Scholar
  46. 46.
    Shah AM, Mebazaa A, Yang Z-K, Cuda G, Lankford EB, Pepper CB, Sollott SJ, Sellers JR, Robotham JL, Lakatta EG (1997) Inhibition of myocardial cross-bridge cycling by hypoxic endothelial cells. A potential mechanism for matching oxygen supply and demand? Circ Res 80: 688–698PubMedGoogle Scholar
  47. 47.
    Kelly RA, Balligand J-L, Smith TW (1996) Nitric oxide and cardiac contractile function. Circ Res 79: 363–380PubMedGoogle Scholar
  48. 48.
    Schulz R, Nava E, Moncada S (1992) Induction and potential biological relevance of a Ca2+-independent nitric oxide synthase in the myocardium. Br J Pharmacol 105: 575–580PubMedGoogle Scholar
  49. 49.
    Balligand J-L, Ungureanu-Longrois D, Simmons WW, Kobzik L, Lowenstein CJ, Lamas S, Kelly RA, Smith TW, Michel T (1995) Induction of NO synthase in rat cardiac microvascular endothelial cells by IL-1 ß and IFN-γ. Am J Physiol 268: H1293-H1303PubMedGoogle Scholar
  50. 50.
    Grocott-Mason RM, Anning P, Evans HG, Lewis MJ, Shah AM (1994) Modulation of left ventricular relaxation in isolated ejecting guinea pig heart by endogenous nitric oxide. Am J Physiol 267: H1804-H1813PubMedGoogle Scholar
  51. 51.
    Paulus WJ, Vantrimpont PJ, Shah AM (1994) Acute effects of nitric oxide on left ventricular relaxation and diastolic distensibility in man. Circulation 89: 2070–2078PubMedGoogle Scholar
  52. 52.
    Paulus WJ, Vantrimpont PJ, Shah AM (1995) Paracrine coronary endothelial control of left ventricular function in humans. Circulation 92:2119–2126PubMedGoogle Scholar
  53. 53.
    Balligand J-L, Kobzik L, Han X, Kaye DM, Belhassen L, O’Hara DS, Kelly RA, Smith TW, Michel T (1995) Nitric oxide-dependent parasympathetic signaling is due to activation of constitutive endothelial (type III) nitric oxide synthase in cardiac myocytes. J Biol Chem 270:14582–14586PubMedCrossRefGoogle Scholar
  54. 54.
    Bartunek J, Shah AM, Vanderheyden M, Paulus WJ (1997) Dobutamine enhances cardiodepressant effects of receptor-mediated coronary endothelial stimulation. Ciruclation 95: 90–96Google Scholar
  55. 55.
    Prendergast BD, Sagach VF, Shah AM (1997) Endogenous nitric oxide augments the Frank-Starling response in the isolated heart. Circulation 96: 1320–1329PubMedGoogle Scholar
  56. 56.
    Finkel MS, Oddis CV, Mayer H, Hattler BG, Simmons RL (1995) Nitric oxide synthase inhibitor alters papillary muscle force-frequency relationship. J Pharmacol Exp Ther 272: 945–952PubMedGoogle Scholar
  57. 57.
    Han X, Shimoni Y, Giles WR (1994) An obligatory role for nitric oxide in autonomic control of mammalian heart rate. J Physiol 476: 309–314PubMedGoogle Scholar
  58. 58.
    Musialek P, Lei M, Brown HF, Paterson DJ, Casadei B (1997) Nitric oxide can increase heart rate by stimulating the hyperpolarization-activated inward current, If. Circ Res 81: 60–68PubMedGoogle Scholar
  59. 59.
    Stamler JS, Singel DJ, Loscalzo J (1992) Biochemistry of nitric oxide and its redox-activated forms. Science 258:1898–1902PubMedCrossRefGoogle Scholar
  60. 60.
    Shah AM, Spurgeon H, Sollott SJ, Talo A, Lakatta EG (1994) 8-bromo cyclic GMP reduces the myofilament response to calcium in intact cardiac myocytes. Circ Res 74: 970–978PubMedGoogle Scholar
  61. 61.
    Lincoln TM, Cornwell TL (1993) Intracellular cyclic GMP receptor proteins. FASEB J 7: 328–338PubMedGoogle Scholar
  62. 62.
    Brady AJB, Poole-Wilson PA, Harding SE, Warren JB (1992) Nitric oxide within cardiac myocytes reduces their contractility in endotoxemia. Am J Physiol 263: H1963-H1966PubMedGoogle Scholar
  63. 63.
    Luss H, Watkins SC, Freeswick PD, Imro AK, Nussler AK, Billiau TR, Simmons RL, del Nido PJ, McGowen FX Jr (1995) Characterization of inducible nitric oxide synthase expression in endo-toxemic rat cardiac myocytes in vivo and following cytokine exposure in vitro. J Mol Cell Cardiol 27: 2015–2029PubMedCrossRefGoogle Scholar
  64. 64.
    Balligand J-L, Ungureanu D, Kelly RA, Kobzik L, Pimentai D, Michel T, Smith TW (1993) Abnormal contractile function due to induction of nitric oxide synthesis in rat cardiac myocytes follows exposure to activated macro-phage-conditioned medium. J Clin Invest 91:2314–2319PubMedCrossRefGoogle Scholar
  65. 65.
    Evans HG, Lewis MJ, Shah AM (1993) Interleukin-1 ß modulates mycardial contraction via dexamethasone-sensitive production of nitric oxide. Cardio-vasc Res 27:1486–1490CrossRefGoogle Scholar
  66. 66.
    Fishman D, Liaudet L, Lazor R, Perret CH, Feihl F (1997) L-canavanine, an inhibitor of inducible nitric oxide synthase, improves venous return in endotoxemic rats. Crit Care Med 25:469–475PubMedCrossRefGoogle Scholar
  67. 67.
    MacMicking JD, Nathan C, Horn G, Chartrain N, Fletcher DS, Trumbauer M, Stevens K, Xie Q, Sokol K, Hutchinson N, Chen H, Mudgett JS (1995) Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell 81: 641–650PubMedCrossRefGoogle Scholar
  68. 68.
    Keller RS, Jones JJ, Kim KF, Myers PR, Adams HR, Parker JL, Rubin LJ (1995) Endotoxin-induced myocardial dysfunction: is there a role for nitric oxide. Shock 4: 338–344PubMedCrossRefGoogle Scholar
  69. 69.
    Klabunde RE, Coston AF (1995) Nitric oxide synthase inhibition does not prevent cardiac depression in endotoxic shock. Shock 3: 73–78PubMedGoogle Scholar
  70. 70.
    Simmons WW, Ungureanu-Longrois D, Smith GK, Smith TW, Kelly RA (1996) Glucocorticoids regulate inducible nitric oxide synthase (NOS2) by inhibiting tetrahydrobiopterin synthesis and l-arginine transport. J Biol Chem 271: 23928–23937PubMedCrossRefGoogle Scholar
  71. 71.
    Nathan C (1995) Natural resistance and nitric oxide. Cell 82: 873–876PubMedCrossRefGoogle Scholar
  72. 72.
    Oddis CV, Finkel MS (1995) Cytokine-stimulated nitric oxide production inhibits mitochondrial activity in cardiac myocytes. Biochem Biophys Res Comm 213:1002–1009PubMedCrossRefGoogle Scholar
  73. 73.
    Xie YW, Shen W, Zhao G, Xu X, Wolin MS, Hintze T (1996) Role of endothelium-derived nitric oxide in the modulation of canine myocardial mitochondrial respiration in vitro. Circ Res 79: 381–387PubMedGoogle Scholar
  74. 74.
    Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sei USA 87: 1620–1624CrossRefGoogle Scholar
  75. 75.
    Pinsky DJ, Cai B, Yang X, Rodriguez C, Sciacca RR, Cannon PJ (1995) The lethal effects of cytokine-induced nitric oxide on cardiac myocytes are blocked by nitric oxide synthase antagonism or transforming growth factor ß. J Clin Invest 95: 677–685PubMedCrossRefGoogle Scholar
  76. 76.
    Ziegler EJ, Fisher CJ, Sprang CL, HA-1A Sepsis Study Group (1991) Treatment of gram-negative bacteremia and septic shock with HA-1A human monoclonal antibody against endotoxin — a randomized, double-blind, placebo-controlled trial. N Engl J Med 324: 429–436PubMedGoogle Scholar
  77. 77.
    Greenman RL, Schein RM, Martin MA, XOMA Sepsis Study Group (1991) A controlled clinical trial of E5 murine monocloncal IgM antibody to endotoxin in the treatment of gram-negative sepsis. JAMA 266:1097–1102PubMedCrossRefGoogle Scholar
  78. 78.
    Exley AR, Cohen J, Buurman W, Owen R, Hanson G, Lumley J, Aulakh JM, Bodmer M, Riddell A, Stephens S, Perry M (1990) Monoclonal antibody to TNF in severe septic shock. Lancet 353: 1275–1277CrossRefGoogle Scholar
  79. 79.
    Vincent JL, Bakker J, Marcecaux G, Schandene L, Kahn RJ, Dupont E (1992) Administration of anti-TNF antibody improves left ventricular function in septic shock patients. Results of a pilot study. Chest 101: 810–815PubMedCrossRefGoogle Scholar
  80. 80.
    Reinhart K, Wiegand-Lohnert C, Grimminger F, Kaul M, Withington S, MAK 195F Sepsis Study Group (1996) Assessment of the safety and efficacy of the monoclonal anti-tumor necrosis factor antibody-fragment, MAK 195F, in patients with sepsis and septic shock: a multicenter, randomised, placebo-controlled, dose ranging study. Crit Care Med 24: 733–742PubMedCrossRefGoogle Scholar
  81. 81.
    Cohen J, Carlet J, INTERSEPT Study Group (1996) An international multi-center, placebo-controlled trial of monoclonal antibody to human tumor necrosis factor-α in patients with sepsis. Crit Care Med 24:1431–1440PubMedCrossRefGoogle Scholar
  82. 82.
    Dhainaut J-F, Tenaillon A, Le Tulzo Y, BN 52021 Sepsis Study Group (1994) Platelet-activating receptor antagonist BN 52021 in the treatment of severe sepsis: a randomised, double-blind, placebo-controlled, multicenter clinical trial. Crit Care Med 22:1720–1728PubMedCrossRefGoogle Scholar
  83. 83.
    Fisher CJ, Agosti JM; Opal SM, Soluble TNF Receptor Sepsis Study Group (1996) Treatment of septic shock with the tumor necrosis factor receptor: Fc fusion protein. N Engl J Med 334: 1697–1702PubMedCrossRefGoogle Scholar
  84. 84.
    Bone RC, Fisher CJ, Clemmer TP, Methylprednisolone Severe Sepsis Study Group (1987) A controlled clinical trial of high-dose methylprednisolone in the treatment of severe sepsis and septic shock. N Engl J Med 317: 653–658PubMedGoogle Scholar
  85. 85.
    Lorente JA, Landis L, de Pablo R, Renes E, Liste D (1993) l-arginine pathway in the sepsis syndrome. Crit Care Med 21:1287–1295PubMedGoogle Scholar
  86. 86.
    Petros A, Lamb G, Leone A, Moncada S, Bennett D, Vallance P (1994) Effects of a nitric oxide synthase inhibitor in humans with septic shock. Cardiovasc Res 28: 34–39PubMedCrossRefGoogle Scholar
  87. 87.
    Preiser J-C, Lejeune P, Roman A, Carrier E, Backer DD, Leeman M, Kahn R, Vincent J-L (1995) Methylene blue administration in septic shock: a clinical trial. Crit Care Med 23: 259–264PubMedCrossRefGoogle Scholar
  88. 88.
    Kiehl MG, Ostermann H, Meyer J, Kienast J (1997) Nitric oxide synthase inhibition by L-NAME in leukocytopaenic patients with severe septic shock. Intensive Care Med 23: 561–566PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • R. M. Grocott-Mason
    • 1
  • A. M. Shah
    • 1
  1. 1.Department of CardiologyUniversity of Wales College of MedicineCardiffUK

Personalised recommendations