Intensive Care Medicine

, Volume 24, Issue 2, pp 172–177 | Cite as

Lung overinflation without positive end-expiratory pressure promotes bacteremia after experimental Klebsiella pneumoniae inoculation

  • S. J. C. Verbrugge
  • V. Šorm
  • A. van ’t Veen
  • D. Gommers
  • B. Lachmann
  • J. W. Mouton


Objective: To determine the effect of peak inspiratory pressure (PIP) and positive end-expiratory pressure (PEEP) on the development of bacteremia with Klebsiella pneumoniae after mechanical ventilation of intratracheally inoculated rats.

Design: Prospective, randomized, animal study.

Setting: Experimental intensive care unit of a University.

Subjects: Eighty male Sprague Daw-ley rats.

Interventions: Intratracheal inoculation with 100 µl of saline containing 3.5−5.0×105 colony forming units (CFUs) K. pneumoniae/ml. Pressure-controlled ventilation (frequency 30 bpm; I/E ratio=1:2; FIO2=1.0) for 180 min at the following settings (PIP/PEEP in cmH2O): 13/3 (n=16); 13/0 (n=16); 30/10 (n=16) and 30/0 (n=16), starting 22 h after inoculation. Arterial blood samples were obtained and cultured before and 180 min after mechanical ventilation and immediately before sacrifice in two groups of non-ventilated control animals (n=8 per group). After sacrifice, the lungs were homogenized to determine the number of CFUs K. pneumoniae.

Measurements and results: The number of CFUs recovered from the lungs was comparable in all experimental groups. After 180 min, 11 animals had positive blood cultures for K. pneumoniae in group 30/0, whereas only 2,0 and 2 animals were positive in 13/3,13/0 and 30/10, respectively (p<0.05 group 30/0 versus all other groups).

Conclusions: These data show that 3 h of mechanical ventilation with a PIP of 30 cmH2O without PEEP in rats promotes bacteremia with K. pneumoniae. The use of 10 cmH2O PEEP at such PIP reduces ventilation-induced K. pneumoniae bacteremia.

Key words

K. pneumoniae Bacteremia Mechanical ventilation Blood gases Animal Rat 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Montgomery AB, Stager MA, Carrico CJ, Hudson LD (1985) Causes of mortality in patients with the adult respiratory distress syndrome. Am Rev Respir Dis 132: 485–489PubMedGoogle Scholar
  2. 2.
    Swank GM, Deitch EA (1996) Role of the gut in multiple organ failure: Bacterial translocation and permeability changes. World J Surg 20: 411–417PubMedCrossRefGoogle Scholar
  3. 3.
    Schlag G, Redl H (1996) Mediators of injury and inflammation. World J Surg 20: 406–410PubMedCrossRefGoogle Scholar
  4. 4.
    Tremblay L, Valenza F, Ribeiro SP, Jingfang L, Slutsky AS (1997) Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 99: 944–952PubMedCrossRefGoogle Scholar
  5. 5.
    Von Bethmann AN, Brasch F, Müller K, Wendel A, Uhlig S (1996) Prolonged hyperventilation is required for release of tumor necrosis factor a but not IL-6. Appl Cardiopulm Pathophysiol 6: 171–177Google Scholar
  6. 6.
    Van ’t Veen A, Mouton JW, Gommers D, Lachmann B (1996) Pulmonary surfactant as vehicle for intratracheally instilled tobramycin in mice infected with Klebsiella pneumoniae. Br J Pharmacol 119:1145–1148Google Scholar
  7. 7.
    Roosendaal R, Bakker IAJM, Van den Berghe-van Raffe M, Michel MF (1986) Continuous versus intermittent administration of ceftazidime in experimental Klebsiella pneumoniae pneumonia in normal and leukopenic rats. Antimicrob Agents Chemother 30: 403–408PubMedGoogle Scholar
  8. 8.
    Webb HH, Tierney DF (1974) Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis 110: 556–565PubMedGoogle Scholar
  9. 9.
    Dreyfuss D, Basset G, Soler P, Saumon G (1985) Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats. Am Rev Respir Dis 132: 880–884PubMedGoogle Scholar
  10. 10.
    Dreyfuss D, Soler P, Basset G, Saumon G (1988) Intermittent positive pressure pulmonary edema: respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 137:1159–1164PubMedGoogle Scholar
  11. 11.
    LaForce FM, Mullane JF, Boehme RF, Kelly WJ, Huber GL (1973) The effect of pulmonary edema on antibacterial defenses of the lung. J Lab Clin Med 82: 634–648PubMedGoogle Scholar
  12. 12.
    Brough-Holub E, Toews GB, van Iwaarden F, Strieter RM, Kunkel SL, Paine R III, Standiford TJ (1997) Alveolar macrophages are required for protective pulmonary defenses in murine Klebsiella Pneumonia: Elimination of alveolar macrophages increases neutrophil recruitment but decreases bacterial clearance and survival. Infect Immun 65:1139–1146Google Scholar
  13. 13.
    Lachmann B, Eijking EP, So KL, Gommers D (1994) In vivo evaluation of the inhibitory capacity of human plasma on exogenous surfactant function. Intensive Care Med 20: 6–11PubMedCrossRefGoogle Scholar
  14. 14.
    Van ’t Veen, Gommers D, Lachmann B (1997) Rationale for surfactant therapy in pneumonia. In: Vincent JL (ed) Year book of Intensive Care and Emergency Medicine. Springer, Berlin Heidelberg, pp 638–653Google Scholar
  15. 15.
    Huber JL, Johanson WG, La Force FM (1977) Experimental models and pulmonary antimicrobial defenses. In: Brian JD, Proctor DF, Reid L (eds) Respiratory defense mechanisms. Dekker, New York, pp 983–1022Google Scholar
  16. 16.
    Gøthgen IH, Berthelsen PG, Rasmussen JP, Jacobsen E (1993) Ventilation in ARDS and asthma: the optimal blood gas values. Scand J Clin Lab Invest Suppl 214: 67–73PubMedCrossRefGoogle Scholar
  17. 17.
    Seidenfeld JJ, Mullins RC, Fowler SR, Johanson WG (1986) Bacterial infection and acute lung injury in hamsters. Am Rev Respir Dis 134: 22–26PubMedGoogle Scholar
  18. 18.
    Tilson MD, Bunke MC, Walker Smith GJ, Katz J, Cronau L, Barash PG, Baue AE (1977) Quantitative bacteriology and pathology of the lung in experimental Pseudomonas pneumonia treated with positive end-expiratory pressure (PEEP). Surgery 82:133–140PubMedGoogle Scholar
  19. 19.
    Johanson WG, Higuchi JH, Woods DE, Gomez P, Coalson JJ (1985) Dissemination of Pseudomonas aeruginosa during lung infection in hamsters. Role of oxygen-induced lung injury. Am Rev Respir Dis 132: 358–361PubMedGoogle Scholar
  20. 20.
    Tremblay LN, Slutsky AS (1996) The role of pressure and volume in ventilator induced lung injury. Appl Cardiopulm Pathophysiol 6:179–190Google Scholar
  21. 21.
    Dreyfuss D, Saumon G (1993) Role of tidal volume, FRC, and end-inspiratory volume in the development of pulmonary edema following mechanical ventilation. Am Rev Respir Dis 148: 1194–1203PubMedGoogle Scholar
  22. 22.
    Taskar V, John J, Evander E, Roberston B, Jonson B (1997) Surfactant dysfunction makes lungs vulnerable to repetitive collapse and reexpansion. Am J respir Crit Care Med 155: 313–320PubMedGoogle Scholar
  23. 23.
    Brigham KL (1982) Mechanisms of lung injury. Clin Chest Med 3: 9–24PubMedGoogle Scholar
  24. 24.
    Tyler DC (1983) Positive end-expiratory pressure: A review. Crit Care Med 11: 300–308PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • S. J. C. Verbrugge
    • 1
  • V. Šorm
    • 1
  • A. van ’t Veen
    • 1
  • D. Gommers
    • 1
  • B. Lachmann
    • 1
  • J. W. Mouton
    • 2
  1. 1.Department of AnesthesiologyErasmus University RotterdamRotterdamThe Netherlands
  2. 2.Department of Medical Microbiology and Infectious DiseasesErasmus University RotterdamRotterdamThe Netherlands

Personalised recommendations