Intensive Care Medicine

, Volume 24, Issue 2, pp 138–146 | Cite as

A novel method of evaluation of three heat-moisture exchangers in six different ventilator settings

  • N. Ünal
  • J. K. K. Kanhai
  • S. L. C. E. Buijk
  • J. C. Pompe
  • W. P. J. Holland
  • I. Gültina
  • C. Ince
  • B. Saygin
  • H. A. Bruining


Objective: The purpose of this study was to assess and compare the humidification, heating, and resistance properties of three commercially available heat-moisture exchangers (HMEs). To mimic clinical conditions, a previously validated, new, realistic experimental setup and measurement protocol was used.

Design: Prospective, comparative experimental study.

Setting: Surgical Intensive Care Unit, University Hospital of Rotterdam.

Materials: An experimental set-up consisting of a patient model, measurement systems, and ventilator and three different HME types.

Interventions: The air flow, pressure in the ventilation circuit, pressure difference over the HME, and partial water vapour pressure and temperature at each side of the HMEs were measured. Measurements were repeated every 30 min during the first 2 h and every hour up to 24 h for each HME at six different ventilator settings. The mean inspiratory and maximum expiratory resistance, flow-weighted mean absolute humidity and temperature outputs, and humidification and heating efficiencies of HMEs were calculated.

Measurements and results: The Dar Hygroster had the highest humidity output, temperature output, humidification efficiency, and heating efficiency values throughout the study (32.8 ± 21. mg/l, 32.2 ± 0.8 °C, 86.3 ± 2.3 %, and 0.9 ± 0.01 %, respectively) in comparison to the Humid-Vent Filter (25.3 ± 3.2 mg/l, 31.9 ± 0.8 °C, 72.2 ± 5.3%, 0.9 ± 0.02 %, respectively) and the Pall Ultipor BB100 breathing circuit filter (23.4 ± 3 mg/l, 28.3 ± 0.7 °C, 68.8 ± 5.9 %, 0.8 ± 0.02 %, respectively). The inspiratory and expiratory resistance of the HMEs remained below clinically acceptable maximum values (2.60 ± 0.04 and 2.45 ± 0.05 cmH2O/l per s, respectively). Conclusion: The Dar Hygroster filter was found to have the highest humidity and temperature output of all three HMEs, the Humid-Vent filter had a satisfactory humidity output only at low tidal volume flow rate and minute volume settings, whereas the Pall Ultipore BB100 never achieved a sufficient humidity and temperature output.

Key words

Humidity Heat and moisture exchangers Mechanical ventilation Temperature Resistance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dery R (1973) The evolution of heat and moisture in the respiratory tract during anaesthesia with a non-rebreathing system. Can Anaesth Soc J 20: 296–309PubMedCrossRefGoogle Scholar
  2. 2.
    Ingelstedt S (1956) Studies on the conditioning of air in the respiratory tract. Acta Otolaryngol Suppl 131:1–81PubMedGoogle Scholar
  3. 3.
    Burton JDK, Lond MB (1962) Effects of dry anaesthetic gases on the respiratory mucous membrane. Lancet III: 235–238CrossRefGoogle Scholar
  4. 4.
    Tsuda T, Noguchi H, Takumi Y, Aochi O (1977) Optimum humidification of air administered to a tracheostomy in dogs. Br J Anaesth 49: 965–976PubMedCrossRefGoogle Scholar
  5. 5.
    Rashad K, Wilson K, Hurt HH, Graff TD, Benson DW (1967) Effect of humidification of anesthetic gases on static compliance. Anesth Analg 46: 127–133PubMedGoogle Scholar
  6. 6.
    Noguchi H, Takumi Y, Aochi O (1973) A study of humidification in tracheotomized dogs. Br J Anaesth 45: 844–847PubMedCrossRefGoogle Scholar
  7. 7.
    Chalon J, Patel C, Ali M, Ramanathan S, Capan L, Tang CK, Turndorf H (1979) Humidity and anesthetized patient. Anesthesiology 50:195–198PubMedCrossRefGoogle Scholar
  8. 8.
    Marfatia S, Donahoe PK, Hendren WH (1975) Effect of dry and humidified gases on the respiratory epithelium in rabbits. J Pediatr Surg 10: 583–590PubMedCrossRefGoogle Scholar
  9. 9.
    Fonkalsrud EW, Sanchez M, Higashijima I, Arima E (1975) A comparative study of the effects of dry vs. humidified ventilation on canine lungs. Surgery 78: 373–380PubMedGoogle Scholar
  10. 10.
    Hirsch JA, Tokayer JL, Robinson MJ, Sackner MA (1975) Effects of dry air and subsequent humidification on tracheal mucous velocity in dogs. J Appl Physiol 39: 242–246PubMedGoogle Scholar
  11. 11.
    Evaluation Report (1987) Heat and moisture exchangers. J Med Eng Technol 11: 117–127CrossRefGoogle Scholar
  12. 12.
    Craven DE, Goularte TA, Make BJ (1984) Contaminated condensate in mechanical ventilator circuits. Am J Respir Crit Care Med 129: 625–628Google Scholar
  13. 13.
    Boys JE, Howells TH (1972) Humidification in anaesthesia. A review of the present situation. Br J Anaesth 44: 879–886PubMedCrossRefGoogle Scholar
  14. 14.
    Im SWK, Fung JPH, So SY, Yu DYC (1982) Unusual dissemination of Pseudomonas by ventilators. Anaesthesia 37:1074–1077PubMedCrossRefGoogle Scholar
  15. 15.
    Klein EF, Graves SA (1974) Hot pot tracheitis. Chest 65: 225–226PubMedCrossRefGoogle Scholar
  16. 16.
    Ogino M, Kopotic R, Mannino FL (1985) Moisture-conserving efficiency of condenser humidifiers. Anaesthesia 40: 990–995PubMedCrossRefGoogle Scholar
  17. 17.
    Martin C, Perrin G, Gevaudan MJ, Saux P, Gouin F (1990) Heat and moisture exchangers and vaporizing humidifiers in the intensive care unit. Chest 97: 144–149PubMedCrossRefGoogle Scholar
  18. 18.
    Ploysongsang Y, Branson R, Rashkin MC, Hurst JM (1988) Pressure flow characteristics of commonly used heat-moisture exchangers. Am J Resp Crit Care Med 138: 675–678Google Scholar
  19. 19.
    Hay R, Miller WC (1982) Efficacy of a new hygroscopic condenser humidifier. Crit Care Med 10: 49–51PubMedCrossRefGoogle Scholar
  20. 20.
    Chalon J, Markham JP, Ali MM, Ramanathan S, Turndorf H (1984) The Pall Ultipor breathing circuit filter: an efficient heat and moisture exchanger. Anesth Analg 63: 566–567PubMedCrossRefGoogle Scholar
  21. 21.
    Eckerbom B, Lindholm CE (1990) Laboratory evaluation of heat and moisture exchangers. Assessment of the draft international standard (ISO/DIS 9360) in practice. Acta Anaesthesiol Scand 34: 291–295PubMedCrossRefGoogle Scholar
  22. 22.
    Eckerbom B, Lindholm CE (1990) Performance evaluation of six heat and moisture exchangers according to the draft international standard (ISO/DIN 9360). Acta Anaesthesiol Scand 34: 404–409PubMedCrossRefGoogle Scholar
  23. 23.
    Heat and Moisture Exchangers (1983–1984) Evaluation. Health Devices Sourcebook 12:155–167Google Scholar
  24. 24.
    Vickers MD, Mecklenburgh JS, Hampson M (1992) Heat and Moisture exchangers (HME), DAR Hygrobac/Hygroboy. Evaluation 103: 1–12Google Scholar
  25. 25.
    Vickers MD, Mecklenburgh JS, Hampson M (1992) Heat and moisture exchangers (HME), Gibeck Humid-Vent filter. Evaluation 102:1–10Google Scholar
  26. 26.
    Vickers MD, Mecklenburgh JS, Hampson M (1992) Heat and moisture exchangers (HME), DAR Hygroster. Evaluation 142:1–16Google Scholar
  27. 27.
    Mebius C (1992) Heat and moisture exchangers with bacterial filters: a laboratory evaluation. Acta Anaesthesiol Scand 36:1–5CrossRefGoogle Scholar
  28. 28.
    Kugimiya T, Phuc TG, Numata K (1989) Laboratory evaluation of heat and moisture exchangers. J Anesth 3: 80–85PubMedCrossRefGoogle Scholar
  29. 29.
    Ünal N, Pompe JC, Holland WPJ, Gültuna I, Huygen PEM, Jabaaij K, Ince C, Saygìn B, Bruining HA (1995) An experimental set-up to test heat-moisture exchangers. Intensive Care Med 21:142–148PubMedCrossRefGoogle Scholar
  30. 30.
    International Organization for Standardization (1988) Heat and moisture exchangers for use in humidifying respired gases in humans. Draft International Standard (ISO/DIS 9360, 1988) 121:1–13Google Scholar
  31. 31.
    International Organization for Standardization (1992) Anaesthetic and respiratory equipment — heat and moisture exchangers for use in humidifying respired gases in humans. International Standard (ISO 9360,1992)Google Scholar
  32. 32.
    McFadden ER, Pichurko BM, Bowman HF, Ingenito E, Burns S, Dowling N, Solway J (1985) Thermal mapping of the airways in humans. J Appl Physiol 58: 564–579PubMedCrossRefGoogle Scholar
  33. 33.
    Ferrus L, Guenard H, Vardon G, Varene P (1980) Respiratory water loss. Respir Physiol 39: 367–381PubMedCrossRefGoogle Scholar
  34. 34.
    Liese W, Warwick WJ, Cumming G (1974) Water vapour pressure in expired air. Respiration 31: 252–261PubMedCrossRefGoogle Scholar
  35. 35.
    Ward JJ, Helmholz HF (1991) Applied humidity and aerosol therapy. In: Burton GG, Hodgkin JE, Ward JJ (eds) Respiratory care. A guide for clinical practice, 3th ed. Lippincott, Philadelphia, pp355–396Google Scholar
  36. 36.
    Cohen IL, Weinberg PF, Fein IA, Rowinski GS (1988) Endotracheal tube occlusion associated with the use of heat and moisture exchangers in the intensive care unit. Crit Care Med 16: 277–279PubMedCrossRefGoogle Scholar
  37. 37.
    Turtle MJ, Ilsley AH, Rutten AJ, Runciman WB (1987) An evaluation of six disposable heat and moisture exchangers. Anaesth Intensive Care 15: 317–322PubMedGoogle Scholar
  38. 38.
    Martin C, Papazian L, Perrin G, Bantz P, Gouin F (1992) Performance evaluation of 3 vaporizing humidifiers and 2 heat and moisture exchangers in patients with minute ventilation >101/ min. Chest 102:1347–1350PubMedCrossRefGoogle Scholar
  39. 39.
    Miyao H, Hirokawa T, Miyasaka K, Kawazoe T (1992) Relative humidity, not absolute humidity, is of great importance when using a humidifier with a heating wire. Crit Care Med 20: 674–679PubMedCrossRefGoogle Scholar
  40. 40.
    Sottiaux T, Mignolet GRT, Damas P, Lamy M (1993) Comparative evaluation of three heat and moisture exchangers during short-term postoperative mechanical ventilation. Chest 104: 220–224PubMedCrossRefGoogle Scholar
  41. 41.
    Conti G, De Blasi RA, Rocco M, Pelaia P Antonelli M, Bufi M, Mattia C, Gasparetto A (1990) Effects of the heat-moisture exchangers on dynamic hyperinflation of mechanically ventilated COPD patients. Intensive Care Med 16: 441–443PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • N. Ünal
    • 1
    • 2
  • J. K. K. Kanhai
    • 1
  • S. L. C. E. Buijk
    • 1
  • J. C. Pompe
    • 1
  • W. P. J. Holland
    • 1
  • I. Gültina
    • 3
  • C. Ince
    • 4
  • B. Saygin
    • 2
  • H. A. Bruining
    • 1
  1. 1.Surgical Intensive Care UnitUniversity Hospital RotterdamRotterdamThe Netherlands
  2. 2.Department of Anesthesiology and Reanimation, Medical FacultyUniversity of AnkaraTurkey
  3. 3.Department of AnesthesiologyUniversity Hospital RotterdamThe Netherlands
  4. 4.Department of Anesthesiology, Academic Medical CentreUniversity of AmsterdamThe Netherlands

Personalised recommendations