Advertisement

The Janus faces of bicarbonate therapy in the ICU

  • Boris Jung
  • Samir JaberEmail author
What's New in Intensive Care

State of the art

Metabolic acidosis is characterized by a primary reduction in plasma bicarbonate concentration below 20 mmol/L in the Henderson–Hasselbalch method and with either an imbalance between strong plasma cations concentration compared to the strong anions concentration (decreasing thus the strong ion difference) and/or an excess in non-volatile weak acids in the Stewart–Fencl method [1, 2]. Acidemia is the term used if the plasma pH is equal to or below 7.38, acidemia being described as severe when the pH is equal to or below 7.20 [3, 4]. Metabolic acidemia can be associated with organ failure, in particular respiratory failure (increased ventilatory demand) and cardiovascular failure (arterial vasodilation, decreases in cardiac inotropism and cardiac output, ventricular arrhythmia) [1, 5, 6]. Metabolic acidemia is observed in 14–42% of the critically ill patients [7] and, when acidemia is severe (pH < 7.20) and persists, is associated with 50–60% mortality in the Intensive...

Notes

Compliance with ethical standards

Conflicts of interest

Pr. Jaber reports receiving consulting fees from Drager, Fisher & Paykel and Fresenius.

References

  1. 1.
    Kraut JA, Madias NE (2012) Treatment of acute metabolic acidosis: a pathophysiologic approach. Nat Rev Nephrol 8:589–601.  https://doi.org/10.1038/nrneph.2012.186 CrossRefPubMedGoogle Scholar
  2. 2.
    Fencl V, Jabor A, Kazda A, Figge J (2000) Diagnosis of metabolic acid–base disturbances in critically ill patients. Am J Respir Crit Care Med 162:2246–2251CrossRefGoogle Scholar
  3. 3.
    Jung B, Martinez M, Claessens Y-E et al (2019) Diagnosis and management of metabolic acidosis: guidelines from a French expert panel. Ann Intensive Care 9(1):92.  https://doi.org/10.1186/s13613-019-0563-2 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kraut JA, Madias NE (2014) Lactic acidosis. N Engl J Med 371:2309–2319.  https://doi.org/10.1056/NEJMra1309483 CrossRefPubMedGoogle Scholar
  5. 5.
    Kimmoun A, Novy E, Auchet T et al (2015) Hemodynamic consequences of severe lactic acidosis in shock states: from bench to bedside. Crit Care Lond Engl 19:175.  https://doi.org/10.1186/s13054-015-0896-7 CrossRefGoogle Scholar
  6. 6.
    Kraut JA, Madias NE (2010) Metabolic acidosis: pathophysiology, diagnosis and management. Nat Rev Nephrol 6:274–285.  https://doi.org/10.1038/nrneph.2010.33 CrossRefPubMedGoogle Scholar
  7. 7.
    Jung B, Rimmele T, Le Goff C et al (2011) Severe metabolic or mixed acidemia on intensive care unit admission: incidence, prognosis and administration of buffer therapy. A prospective, multiple-center study. Crit Care 15:R238.  https://doi.org/10.1186/cc10487 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Smith I, Kumar P, Molloy S et al (2001) Base excess and lactate as prognostic indicators for patients admitted to intensive care. Intensive Care Med 27:74–83CrossRefGoogle Scholar
  9. 9.
    Kraut JA, Kurtz I (2006) Use of base in the treatment of acute severe organic acidosis by nephrologists and critical care physicians: results of an online survey. Clin Exp Nephrol 10:111–117.  https://doi.org/10.1007/s10157-006-0408-9 CrossRefPubMedGoogle Scholar
  10. 10.
    Mathieu D, Neviere R, Billard V et al (1991) Effects of bicarbonate therapy on hemodynamics and tissue oxygenation in patients with lactic acidosis: a prospective, controlled clinical study. Crit Care Med 19:1352–1356CrossRefGoogle Scholar
  11. 11.
    Cooper DJ, Walley KR, Wiggs BR, Russell JA (1990) Bicarbonate does not improve hemodynamics in critically ill patients who have lactic acidosis. A prospective, controlled clinical study. Ann Intern Med 112:492–498CrossRefGoogle Scholar
  12. 12.
    Jaber S, Paugam C, Futier E et al (2018) Sodium bicarbonate therapy for patients with severe metabolic acidaemia in the intensive care unit (BICAR-ICU): a multicentre, open-label, randomised controlled, phase 3 trial. Lancet 392:31–40.  https://doi.org/10.1016/S0140-6736(18)31080-8 CrossRefPubMedGoogle Scholar
  13. 13.
    Levraut J, Giunti C, Ciebiera J-P et al (2001) Initial effect of sodium bicarbonate on intracellular pH depends on the extracellular nonbicarbonate buffering capacity. Crit Care Med 29:1033–1039.  https://doi.org/10.1097/00003246-200105000-00032 CrossRefPubMedGoogle Scholar
  14. 14.
    Nielsen HB, Hein L, Svendsen LB et al (2002) Bicarbonate attenuates intracellular acidosis. Acta Anaesthesiol Scand 46:579–584CrossRefGoogle Scholar
  15. 15.
    Bellingham AJ, Detter JC, Lenfant C (1971) Regulatory mechanisms of hemoglobin oxygen affinity in acidosis and alkalosis. J Clin Invest 50:700–706.  https://doi.org/10.1172/JCI106540 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Gaudry S, Verney C, Hajage D et al (2018) Hypothesis: early renal replacement therapy increases mortality in critically ill patients with acute on chronic renal failure. A post hoc analysis of the AKIKI trial. Intensive Care Med 44:1360–1361.  https://doi.org/10.1007/s00134-018-5210-0 CrossRefPubMedGoogle Scholar
  17. 17.
    Zhang Z, Zhu C, Mo L, Hong Y (2018) Effectiveness of sodium bicarbonate infusion on mortality in septic patients with metabolic acidosis. Intensive Care Med 44:1888–1895.  https://doi.org/10.1007/s00134-018-5379-2 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Département de Médecine Intensive et RéanimationCHU MontpellierMontpellierFrance
  2. 2.PhyMedExp, INSERM U1046, CNRS, UMR 9214Centre Hospitalier Universitaire Montpellier, University of MontpellierMontpellier Cedex 5France
  3. 3.Intensive Care Unit, Anesthesiology and Intensive Care, Anesthesia and Critical Care Department B, Saint Eloi Teaching HospitalCentre Hospitalier Universitaire Montpellier, University MontpellierMontpellier Cedex 5France

Personalised recommendations