Advertisement

Intensive Care Medicine

, Volume 45, Issue 7, pp 913–927 | Cite as

Brain ultrasonography: methodology, basic and advanced principles and clinical applications. A narrative review

  • Chiara RobbaEmail author
  • Alberto Goffi
  • Thomas Geeraerts
  • Danilo Cardim
  • Gabriele Via
  • Marek Czosnyka
  • Soojin Park
  • Aarti Sarwal
  • Llewellyn Padayachy
  • Frank Rasulo
  • Giuseppe Citerio
Review

Abstract

Brain ultrasonography can be used to evaluate cerebral anatomy and pathology, as well as cerebral circulation through analysis of blood flow velocities. Transcranial colour-coded duplex sonography is a generally safe, repeatable, non-invasive, bedside technique that has a strong potential in neurocritical care patients in many clinical scenarios, including traumatic brain injury, aneurysmal subarachnoid haemorrhage, hydrocephalus, and the diagnosis of cerebral circulatory arrest. Furthermore, the clinical applications of this technique may extend to different settings, including the general intensive care unit and the emergency department. Its increasing use reflects a growing interest in non-invasive cerebral and systemic assessment. The aim of this manuscript is to provide an overview of the basic and advanced principles underlying brain ultrasonography, and to review the different techniques and different clinical applications of this approach in the monitoring and treatment of critically ill patients.

Keywords

Brain ultrasonography Transcranial Doppler Optic nerve sheath diameter Neurosonology 

Notes

Acknowledgements

We would like to thank Mazen Elwishi, Andrea Petropolis, Carolina B. Gomez, Andrea Rigamonti and Simon Abrahamson for generously sharing their educational material.

Funding

None.

Compliance with ethical standards

Conflicts of interest

GC is Editor-in-Chief of Intensive Care Medicine. CR is Junior Editor of Intensive Care Medicine. The other authors have nothing to declare.

Supplementary material

134_2019_5610_MOESM1_ESM.doc (42 kb)
Probes/Technology, TCCD anatomy (DOC 42 kb)
134_2019_5610_MOESM2_ESM.jpg (1.7 mb)
TCCD-basic technique. Basic steps for the insonation of the MCA. Using two-dimensional B-mode imaging, midbrain is identified in the transtemporal window (step 1), and subsequently pulsations of the cerebral arteries at the level of the circle of Willis are identified anterior and lateral to the midbrain. Colour Doppler is then used to better identify each artery by its depth and direction of flow in relation to the probe and other visualised arteries (step 2). Once the target vessel is identified, spectral Doppler waveforms can be obtained through pulsed-wave (PW) Doppler with a sample volume of 3–6-mm gate for the anterior circulation and up to 10-mm gate for posterior circulation (step 3) (JPEG 1745 kb)
134_2019_5610_MOESM3_ESM.jpg (2.1 mb)
1c–d Summary of identification criteria for arteries of the circle of Willis. MCA, middle cerebral artery; ACA, anterior cerebral artery; PCA, posterior cerebral artery (JPEG 2159 kb)
134_2019_5610_MOESM4_ESM.jpg (1.5 mb)
Supplementary material 4 (JPEG 1521 kb)

Video demonstrating TCCD examination and vessels insonation (MP4 18745 kb)

134_2019_5610_MOESM6_ESM.doc (356 kb)
Basic and advanced TCD-derived parameters (DOC 356 kb)

Video demonstrating how to perform ONSD examination (MP4 17572 kb)

134_2019_5610_MOESM8_ESM.docx (737 kb)
TCD for the diagnosis of vasospasm (DOCX 737 kb)

Changes in the middle cerebral artery waveform morphology during progressive increase of ICP and decrease in CPP. When ICP equalizes to diastolic blood pressure, cerebral blood flow is only detected during systole. If ICP reaches values greater than diastolic blood pressure, an oscillatory movement of blood with reversal of diastolic flow appears. When ICP reaches the systolic blood pressure, only sharp systolic spikes are evident (reverberating flow), indicating the absence of any net forward flow (i.e., absence of cerebral blood supply) compatible with cerebral circulatory arrest (MP4 24921 kb)

134_2019_5610_MOESM10_ESM.doc (58 kb)
B-mode and colour Doppler video of middle cerebral artery showing only Doppler signals during the systolic phase of the cardiac cycle. This pattern is concerning for high ICPs and progression to cerebral circulatory arrest (DOC 58 kb)
134_2019_5610_MOESM11_ESM.jpg (1.7 mb)
Brain ultrasonography in the context of stroke management (JPEG 1691 kb)

Figure demonstrating the use of point-of-care ultrasound in the context of cardiac arrest. Brain ultrasonography can be implemented as part of the whole-body sonographic assessment of patients suffering cardiac arrest for resuscitation guidance or for monitoring in the post-cardiac arrest management (MOV 4015 kb)

134_2019_5610_MOESM13_ESM.jpg (890 kb)
The use of brain ultrasonography in the context of cardiac arrest and post-resuscitation syndrome (JPEG 890 kb)
134_2019_5610_MOESM14_ESM.jpg (2.3 mb)
Table 2a. Summary of studies exploring ultrasonography-TCCD prognostic performance in cardiac arrest. CPC: cerebral performance category; CVR: cerebrovascular resistance; Dia: diastolic; SD: standard deviations from previously published normative values for children of similar age and gender; EDV: end-diastolic velocity; EFV: extreme flow velocity (= a value greater than or less than two standard deviations from normative); GOS-E: Extended Glasgow Outcome Scale, dFV: diastolic flow velocity; MFVMCA: mean flow velocity middle of cerebral artery; NR: not reported; NS: non-survivors; PI: pulsatility index; PSV: peak systolic velocity; RI: resistivity index; Sys: systolic (JPEG 2352 kb)
134_2019_5610_MOESM15_ESM.docx (232 kb)
Table 2b. Summary of studies exploring ultrasonography-ONSD prognostic performance. Adm: admission; AUC: area under the curve; CI: confidence interval; CPC: cerebral performance category; d: day; GOS: Glasgow Outcome Scale; IQR: inter-quartile range; SD: standard deviation; Se: sensitivity; Sp: specificity; TTM: targeted temperature management (DOCX 231 kb)
134_2019_5610_MOESM16_ESM.docx (70 kb)
Special considerations: the use of brain ultrasonography in the paediatric population and in pregnant patients (DOCX 70 kb)
134_2019_5610_MOESM17_ESM.docx (31 kb)
Paediatric case 1. Video clip in axial plane demonstrating hyperechogenic tumour with a hypoechogenic cystic component and compression of surrounding cerebellar tissue (DOCX 30 kb)
134_2019_5610_MOESM18_ESM.docx (46 kb)
Paediatric case 2. Video demonstrating large arterial supply and venous drainage of an intraventricular choroid plexus tumour (DOCX 153 kb)

Supplementary material 19 (MOV 8283 kb)

Supplementary material 20 (MOV 7436 kb)

134_2019_5610_MOESM21_ESM.tiff (1.5 mb)
Different case scenarios in the paediatric population. Image A. Coronal image demonstrating marked ventriculomegaly, involving both lateral ventricles, frontal and occipital horns, as well the third ventricle. Image B. Coronal image demonstrating a large intraventricular cyst displacing the midline and causing contralateral entrapment hydrocephalus. Image C. Sagittal image demonstrating ventriculomegaly, with hyperdense choroid plexus in the posterior aspect of the lateral ventricle. Image D. Coronal image demonstrating hydrocephalus due to a tectal arachnoid cyst, with catheter insertion demonstrated in the inferior aspect of the cyst. Image E. Coronal image demonstrating marked ventriculomegaly and a cavum septum pellucidum. Image F. Axial image demonstrating large hyperechogenic tumour with hypoechogenic cystic component compressing the cerebellum. Image G. Coronal image demonstrating intraparenchymal hypoechogenic cystic lesion with surrounding superolateral hyperechogenic oedematous tissue. Image H. Sagittal image demonstrating a large, bilobar, hyperechogenic mass within the lateral ventricle, arising from the choroid plexus. Image I. Duplex Doppler imaging demonstrating the large vasculature which are the arterial supply and venous drainage of the tumour. (TIFF 1521 kb)
134_2019_5610_MOESM22_ESM.docx (42 kb)
Pitfalls, artefacts and limitations of brain ultrasonography (DOCX 41 kb)

References

  1. 1.
    Aaslid R, Markwalder T-M, Nornes H (1982) Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg 57(6):769–774Google Scholar
  2. 2.
    Robba C, Cardim D, Sekhon M, Budohoski K, Czosnyka M (2018) Transcranial Doppler: a stethoscope for the brain-neurocritical care use. J Neurosci Res 96(4):720–730Google Scholar
  3. 3.
    Mäurer M, Shambal S, Berg D, Woydt M, Hofmann E, Georgiadis D, Lindner A, Becker G (1998) Differentiation between intracerebral hemorrhage and ischemic stroke by transcranial color-coded duplex-sonography. Stroke 29(12):2563–2567Google Scholar
  4. 4.
    Pérez ES, Delgado-Mederos R, Rubiera M, Delgado P, Ribó M, Maisterra O, Ortega G, Álvarez-Sabin J, Molina CA (2009) Transcranial duplex sonography for monitoring hyperacute intracerebral hemorrhage. Stroke 40(3):987–990Google Scholar
  5. 5.
    Becker G, Bogdahn U, Strassburg HM, Lindner A, Hassel W, Meixensberger J, Hofmann E (1994) Identification of ventricular enlargement and estimation of intracranial pressure by transcranial color-coded real-time sonography. J Neuroimaging 4(1):17–22Google Scholar
  6. 6.
    Seidel G, Kaps M, Gerriets T, Hutzelmann A (1995) Evaluation of the ventricular system in adults by transcranial duplex sonography. J Neuroimaging 5(2):105–108Google Scholar
  7. 7.
    Kiphuth IC, Huttner HB, Struffert T, Schwab S, Köhrmann M (2011) Sonographic monitoring of ventricle enlargement in posthemorrhagic hydrocephalus. Neurology 76(10):858–862Google Scholar
  8. 8.
    Robba C, Simonassi F, Ball L, Pelosi P (2018) Transcranial color-coded duplex sonography for bedside monitoring of central nervous system infection as a consequence of decompressive craniectomy after traumatic brain injury. Intensive Care Med.  https://doi.org/10.1007/s00134-018-5405-4 Google Scholar
  9. 9.
    Seidel G, Gerriets T, Kaps M, Missler U (1996) Dislocation of the third ventricle due to space-occupying stroke evaluated by transcranial duplex sonography. J Neuroimaging 6(4):227–230Google Scholar
  10. 10.
    Gerriets T, Stolz E, Modrau B, Fiss I, Seidel G, Kaps M (1999) Sonographic monitoring of midline shift in hemispheric infarctions. Neurology 52(1):45–49Google Scholar
  11. 11.
    Gerriets T, Stolz E, König S, Babacan S, Fiss I, Jauss M, Kaps M (2001) Sonographic monitoring of midline shift in space-occupying stroke: an early outcome predictor. Stroke 32(2):442–447Google Scholar
  12. 12.
    Motuel J, Biette I, Srairi M, Mrozek S, Kurrek MM, Chaynes P, Cognard C, Fourcade O, Geeraerts T (2014) Assessment of brain midline shift using sonography in neurosurgical ICU patients. Crit Care 18(1):676Google Scholar
  13. 13.
    Liao CC, Chen YF, Xiao F (2018) Brain midline shift measurement and its automation: A review of techniques and algorithms. Int J Biomed Imaging 2018:4303161Google Scholar
  14. 14.
    Geeraerts T, Launey Y, Martin L, Pottecher J, Vigué B, Duranteau J, Benhamou D (2007) Ultrasonography of the optic nerve sheath may be useful for detecting raised intracranial pressure after severe brain injury. Intensive Care Med 33(10):1704–1711Google Scholar
  15. 15.
    Geeraerts T, Merceron S, Benhamou D, Vigué B, Duranteau J (2008) Non-invasive assessment of intracranial pressure using ocular sonography in neurocritical care patients. Intensive Care Med 34(11):2062–2067Google Scholar
  16. 16.
    Robba C, Santori G, Czosnyka M, Corradi F, Bragazzi N, Padayachy L, Taccone FS, Citerio G (2018) Optic nerve sheath diameter measured sonographically as non-invasive estimator of intracranial pressure: a systematic review and meta-analysis. Intensive Care Med 44(8):1284–1294Google Scholar
  17. 17.
    Kimberly HH, Shah S, Marill K, Noble V (2008) Correlation of optic nerve sheath diameter with direct measurement of intracranial pressure. Acad Emerg Med 15(2):201–204Google Scholar
  18. 18.
    Robba C, Cardim D, Tajsic T, Pietersen J, Bulman M, Donnelly J, Lavinio A, Gupta A, Menon DK, Hutchinson PJA, Czosnyka M (2017) Ultrasound non-invasive measurement of intracranial pressure in neurointensive care: a prospective observational study. PLoS Med 14(7):e1002356Google Scholar
  19. 19.
    Chesnut R, Videtta W, Vespa P, Le Roux P, Menon DK, Citerio G, Bader MK, Brophy GM, Diringer MN, Stocchetti N, Armonda R, Badjatia N, Boesel J, Chou S, Claassen J, Czosnyka M, De Georgia M, Figaji A, Fugate J, Helbok R, Horowitz D, Hutchinson P, Kumar M, McNett M, Miller C, Naidech A, Oddo M, Olson DW, O’Phelan K, Provencio J, Puppo C, Riker R, Robertson C, Schmidt JM, Taccone F (2014) Intracranial pressure monitoring: fundamental considerations and rationale for monitoring. Neurocrit Care 21(2):64–84Google Scholar
  20. 20.
    Czosnyka JPM, Richards HK, Whitehouse HE (1996) Relationship between transcranial Doppler-determined pulsatility index and cerebrovascular resistance: an experimental study. J Neurosurg 84(1):79–84Google Scholar
  21. 21.
    Cardim D, Robba C, Bohdanowicz M, Donnelly J, Cabella B, Liu X, Cabeleira M, Smielewski P, Schmidt B, Czosnyka M (2016) Non-invasive monitoring of intracranial pressure using transcranial Doppler ultrasonography: is it possible? Neurocrit Care 25(3):473–491Google Scholar
  22. 22.
    Schmidt EA, Czosnyka M, Gooskens I, Piechnik SK, Matta BF, Whitfield PC, Pickard JD (2001) Preliminary experience of the estimation of cerebral perfusion pressure using transcranial Doppler ultrasonography. J Neurol Neurosurg Psychiatry 70(2):198–204Google Scholar
  23. 23.
    Frontera JA, Fernandez A, Schmidt JM, Claassen J, Wartenberg KE, Badjatia N, Connolly ES, Mayer SA (2009) Defining vasospasm after subarachnoid hemorrhage: what is the most clinically relevant definition? Stroke 40(6):1963–1968Google Scholar
  24. 24.
    Aaslid R, Huber P, Nornes H (1984) Evaluation of cerebrovascular spasm with transcranial Doppler ultrasound. J Neurosurg 60(1):37–41Google Scholar
  25. 25.
    Budohoski KP, Czosnyka M, Smielewski P, Kasprowicz M, Helmy A, Bulters D, Pickard JD, Kirkpatrick PJ (2012) Impairment of cerebral autoregulation predicts delayed cerebral ischemia after subarachnoid hemorrhage: A prospective observational study. Stroke 43:3230–3237Google Scholar
  26. 26.
    Lindegaard KF, Nornes H, Bakke SJ, Sorteberg W, Nakstad P (1988) Cerebral vasospasm after subarachnoid haemorrhage investigated by means of transcranial Doppler ultrasound. Acta Neurochir Suppl (Wien) 42:81–84Google Scholar
  27. 27.
    Zimmerman BJ, Pons MM (1986) Development of a structured interview for assessing student use of self-regulated learning strategies. Am Educ Res J 23(4):614–628Google Scholar
  28. 28.
    Hurst RW, Schnee C, Raps EC, Farber R, Flamm ES (1993) Role of transcranial Doppler in neuroradiological treatment of intracranial vasospasm. Stroke 24(2):299–303Google Scholar
  29. 29.
    Swiat M, Weigele J, Hurst RW, Kasner SE, Pawlak M, Arkuszewski M, Al-Okaili RN, Swiercz M, Ustymowicz A, Opala G, Melhem ER, Krejza J (2009) Middle cerebral artery vasospasm: transcranial color-coded duplex sonography versus conventional nonimaging transcranial Doppler sonography. Crit Care Med 37(3):963–968Google Scholar
  30. 30.
    Neulen A, Greke C, Prokesch E, König J, Wertheimer D, Giese A (2013) Image guidance to improve reliability and data integrity of transcranial Doppler sonography. Clin Neurol Neurosurg 115(8):1382–1388Google Scholar
  31. 31.
    Neulen A, Prokesch E, Stein M, König J, Giese A (2016) Image-guided transcranial Doppler sonography for monitoring of vasospasm after subarachnoid hemorrhage. Clin Neurol Neurosurg 145:14–18Google Scholar
  32. 32.
    Kyoi K, Hashimoto H, Tokunaga H, Morimoto T, Hiramatsu KI, Tsunoda S, Tada T, Utsumi S (1989) Time course of blood velocity change and clinical symptoms related to cerebral vasospasm and prognosis after aneurysmal surgery. Neurol Surg 17(1):21–30Google Scholar
  33. 33.
    Mastantuono J-M, Combescure C, Elia N, Tramèr MR, Lysakowski C (2018) Transcranial Doppler in the diagnosis of cerebral vasospasm. Crit Care Med 47:1Google Scholar
  34. 34.
    Powner DJ, Hernandez M, Rives TE (2004) Variability among hospital policies for determining brain death in adults. Crit Care Med 32(6):1284–1288Google Scholar
  35. 35.
    Shemie SD, Lee D, Sharpe M, Tampieri D, Young B (2008) Brain blood flow in the neurological determination of death: Canadian expert report. Can J Neurol Sci 35(2):140–145Google Scholar
  36. 36.
    Orban JC, El-Mahjoub A, Rami L, Jambou P, Ichai C (2012) Transcranial Doppler shortens the time between clinical brain death and angiographic confirmation: a randomized trial. Transplantation 94(6):585–588Google Scholar
  37. 37.
    Chang JJ, Tsivgoulis G, Katsanos AH, Malkoff MD, Alexandrov AV (2016) Diagnostic accuracy of transcranial Doppler for brain death confirmation: systematic review and meta-analysis. Am J Neuroradiol 37(3):408–414Google Scholar
  38. 38.
    Llompart-Pou JA, Abadal JM, Güenther A, Rayo L, Martín-del Rincón JP, Homar J, Pérez-Bárcena J (2013) Transcranial sonography and cerebral circulatory arrest in adults: a comprehensive review. ISRN Crit Care 2013:1–6Google Scholar
  39. 39.
    Ragoschke-Schumm A, Walter S (2018) DAWN and DEFUSE-3 trials: is time still important? Radiologe 58(May):20–23Google Scholar
  40. 40.
    Castro P, Azevedo E, Sorond F (2018) Cerebral autoregulation in stroke. Curr Atheroscler Rep 20(8):37Google Scholar
  41. 41.
    Schwab S, Aschoff A, Spranger M, Albert F, Hacke W (1996) The value of intracranial pressure monitoring in acute hemispheric stroke. Neurology 47(2):393–398Google Scholar
  42. 42.
    Poca MA, Benejam B, Sahuquillo J, Riveiro M, Frascheri L, Merino MA, Delgado P, Alvarez-Sabin J (2010) Monitoring intracranial pressure in patients with malignant middle cerebral artery infarction: is it useful? J Neurosurg 112(3):648–657Google Scholar
  43. 43.
    Chesnut RM, Temkin N, Carney N, Dikmen S, Rondina C, Videtta W, Petroni G, Lujan S, Pridgeon J, Barber J, Machamer J, Chaddock K, Celix JM, Cherner M, Hendrix T (2012) A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J Med 367(26):2471–2481Google Scholar
  44. 44.
    Stolz EP (2008) Role of ultrasound in diagnosis and management of cerebral vein and sinus thrombosis. Front Neurol Neurosci 23:112–121Google Scholar
  45. 45.
    Stravitz RT, Kramer AH, Davern T, Shaikh AOS, Caldwell SH, Mehta RL, Blei AT, Fontana RJ, McGuire BM, Rossaro L, Smith AD, Lee WM (2007) Intensive care of patients with acute liver failure: recommendations of the US. Acute liver failure study group. Crit Care Med 35(11):2498–2508Google Scholar
  46. 46.
    Rajajee V, Williamson CA, Fontana RJ, Courey AJ, Patil PG (2018) Noninvasive intracranial pressure assessment in acute liver failure. Neurocrit Care 29(2):280–290Google Scholar
  47. 47.
    Karvellas CJ, Fix OK, Battenhouse H, Durkalski V, Sanders C, Lee WM (2014) Outcomes and complications of intracranial pressure monitoring in acute liver failure: a retrospective cohort study. Crit Care Med 42(5):1157–1167Google Scholar
  48. 48.
    Hay JE (2004) Acute liver failure. Curr Treat Options Gastroenterol 7(6):459–468Google Scholar
  49. 49.
    Strauss G, Hansen BA, Kirkegaard P, Rasmussen A, Hjortrup A, Larsen FS (1997) Liver function, cerebral blood flow autoregulation, and hepatic encephalopathy in fulminant hepatic failure. Hepatology 25(4):837–839Google Scholar
  50. 50.
    Ardizzone G, Arrigo A, Panaro F, Ornis S, Colombi R, Distefano S, Jarzembowski TM, Cerruti E (2004) Cerebral hemodynamic and metabolic changes in patients with fulminant hepatic failure during liver transplantation. Transplant Proc 36(10):3060–3064Google Scholar
  51. 51.
    Strauss GI (2007) The effect of hyperventilation upon cerebral blood flow and metabolism in patients with fulminant hepatic failure. Dan Med Bull 54:99–111Google Scholar
  52. 52.
    Aggarwal S, Brooks DM, Kang Y, Linden PK, Patzer JF (2008) Noninvasive monitoring of cerebral perfusion pressure in patients with acute liver failure using transcranial Doppler ultrasonography. Liver Transplant 14(7):1048–1057Google Scholar
  53. 53.
    De Riva N, Budohoski KP, Smielewski P, Kasprowicz M, Zweifel C, Steiner LA, Reinhard M, Fábregas N, Pickard JD, Czosnyka M (2012) Transcranial Doppler pulsatility index: what it is and what it isn’t. Neurocrit Care 17(1):58–66Google Scholar
  54. 54.
    Zweifel C, Czosnyka M, Carrera E, De Riva N, Pickard JD, Smielewski P (2012) Reliability of the blood flow velocity pulsatility index for assessment of intracranial and cerebral perfusion pressures in head-injured patients. Neurosurgery 71(4):853–861Google Scholar
  55. 55.
    Czosnyka M, Matta BF, Smielewski P, Kirkpatrick PJ, Pickard JD (1998) Cerebral perfusion pressure in head-injured patients: a noninvasive assessment using transcranial Doppler ultrasonography. J Neurosurg 88(5):802–808Google Scholar
  56. 56.
    Helmke K, Burdelski M, Hansen HC (2000) Detection and monitoring of intracranial pressure dysregulation in liver failure by ultrasound. Transplantation 70(2):392–395Google Scholar
  57. 57.
    Hayman EG, Patel AP, Kimberly WT, Sheth KN, Simard JM (2018) Cerebral edema after cardiopulmonary resuscitation: a therapeutic target following cardiac arrest? Neurocrit Care 28(3):276–287Google Scholar
  58. 58.
    Gueugniaud PY, Garcia-Darennes F, Gaussorgues P, Bancalari G, Petit P, Robert D (1991) Prognostic significance of early intracranial and cerebral perfusion pressures in post-cardiac arrest anoxic coma. Intensive Care Med 17(7):392–398Google Scholar
  59. 59.
    Callaway CW, Donnino MW, Fink EL, Geocadin RG, Golan E, Kern KB, Leary M, Meurer WJ, Peberdy MA, Thompson TM, Zimmerman JL (2015) Part 8: post-cardiac arrest care: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 132(18):S465–S482Google Scholar
  60. 60.
    You Y, Park J, Min J, Yoo I, Jeong W, Cho Y, Ryu S, Lee J, Kim S, Cho S, Oh S, Lee J, Ahn H, Lee B, Lee D, Na K, In Y, Kwack C, Lee J (2018) Relationship between time related serum albumin concentration, optic nerve sheath diameter, cerebrospinal fluid pressure, and neurological prognosis in cardiac arrest survivors. Resuscitation 131:42–47Google Scholar
  61. 61.
    Ueda T, Ishida E, Kojima Y, Yoshikawa S, Yonemoto H (2015) Sonographic optic nerve sheath diameter: a simple and rapid tool to assess the neurologic prognosis after cardiac arrest. J Neuroimaging 25(6):927–930Google Scholar
  62. 62.
    Ertl M, Weber S, Hammel G, Schroeder C, Krogias C (2018) Transorbital sonography for early prognostication of hypoxic-ischemic encephalopathy after cardiac arrest. J Neuroimaging 28(5):542–548Google Scholar
  63. 63.
    Chelly J, Deye N, Guichard JP, Vodovar D, Vong L, Jochmans S, Thieulot-Rolin N, Sy O, Serbource-Goguel J, Vinsonneau C, Megarbane B, Vivien B, Tazarourte K, Monchi M (2016) The optic nerve sheath diameter as a useful tool for early prediction of outcome after cardiac arrest: a prospective pilot study. Resuscitation 103:7–13Google Scholar
  64. 64.
    Cardim D, Griesdale DE, Ainslie PN, Robba C (2019) A comparison of non-invasive versus invasive measures of intracranial pressure in hypoxic ischaemic brain injury after cardiac arrest. Resuscitation 137:221–228Google Scholar
  65. 65.
    Lewis LM, Gomez CR, Ruoff BE, Gomez SM, Hall IS, Gasirowski B (1990) Transcranial Doppler determination of cerebral perfusion in patients undergoing CPR: methodology and preliminary findings. Ann Emerg Med 19(10):1148–1151Google Scholar
  66. 66.
    Blumenstein J, Kempfert J, Walther T, Van Linden A, Fassl J, Borger M, Mohr FW (2010) Cerebral flow pattern monitoring by transcranial Doppler during cardiopulmonary resuscitation. Anaesth Intensive Care 38(2):376–380Google Scholar
  67. 67.
    Ghazy T, Darwisch A, Schmidt T, Fajfrova Z, Zickmüller C, Masshour A, Matschke K, Kappert U (2016) Transcranial Doppler sonography for optimization of cerebral perfusion in aortic arch operation. Ann Thorac Surg 101(1):e15–e16Google Scholar
  68. 68.
    Lovett ME, Maa T, Chung MG, O’Brien NF (2018) Cerebral blood flow velocity and autoregulation in paediatric patients following a global hypoxic-ischaemic insult. Resuscitation 126:191–196Google Scholar
  69. 69.
    Lin JJ, Hsia SH, Wang HS, Chiang MC, Lin KL (2015) Transcranial Doppler ultrasound in therapeutic hypothermia for children after resuscitation. Resuscitation 89:182–187Google Scholar
  70. 70.
    Hoedemaekers CW, Ainslie PN, Hinssen S, Aries MJ, Bisschops LL, Hofmeijer J, van der Hoeven JG (2017) Low cerebral blood flow after cardiac arrest is not associated with anaerobic cerebral metabolism. Resuscitation 120:45–50Google Scholar
  71. 71.
    van den Brule JMD, Vinke E, van Loon LM, van der Hoeven JG, Hoedemaekers CWE (2017) Middle cerebral artery flow, the critical closing pressure, and the optimal mean arterial pressure in comatose cardiac arrest survivors—an observational study. Resuscitation 110:85–89Google Scholar
  72. 72.
    Heimburger D, Durand M, Gaide-Chevronnay L, Dessertaine G, Moury PH, Bouzat P, Albaladejo P, Payen JF (2016) Quantitative pupillometry and transcranial Doppler measurements in patients treated with hypothermia after cardiac arrest. Resuscitation 103:88–93Google Scholar
  73. 73.
    Doepp F, Reitemeier J, Storm C, Hasper D, Schreiber SJ (2014) Duplex sonography of cerebral blood flow after cardiac arrest–a prospective observational study. Resuscitation 85(4):516–521Google Scholar
  74. 74.
    Bisschops LLA, Van Der Hoeven JG, Hoedemaekers CWE (2012) Effects of prolonged mild hypothermia on cerebral blood flow after cardiac arrest. Crit Care Med 40(8):2362–2367Google Scholar
  75. 75.
    Lemiale V, Huet O, Vigué B, Mathonnet A, Spaulding C, Mira JP, Carli P, Duranteau J, Cariou A (2008) Changes in cerebral blood flow and oxygen extraction during post-resuscitation syndrome. Resuscitation 76(1):17–24Google Scholar
  76. 76.
    Iida K, Satoh H, Arita K, Nakahara T, Kurisu K, Ohtani M (1997) Delayed hyperemia causing intracranial hypertension after cardiopulmonary resuscitation. Crit Care Med 25(6):971–976Google Scholar
  77. 77.
    Buunk G, Van Der Hoeven JG, Meinders AE (1999) Prognostic significance of the difference between mixed venous and jugular bulb oxygen saturation in comatose patients resuscitated from a cardiac arrest. Resuscitation 41(3):257–262Google Scholar
  78. 78.
    Aarrevaara T, Dobson IR (2013) Is there a conflict between teaching and research? the views of engineering academics in Europe. Glob J Eng Educ 15(2):75–81Google Scholar
  79. 79.
    Álvarez-Fernández JA, Pérez-Quintero R (2009) Use of transcranial Doppler ultrasound in the management of post-cardiac arrest syndrome. Resuscitation 80(11):1321–1322Google Scholar
  80. 80.
    Carbutti G, Romand JA, Carballo JS, Bendjelid SMH, Suter PM, Bendjelid K (2003) Transcranial Doppler: an early predictor of ischemic stroke after cardiac arrest? Anesth Analg 97(5):1262–1265Google Scholar
  81. 81.
    Rincon F, Ghosh S, Dey S, Maltenfort M, Vibbert M, Urtecho J, McBride W, Moussouttas M, Bell R, Ratliff JK, Jallo J (2012) Impact of acute lung injury and acute respiratory distress syndrome after traumatic brain injury in the United States. Neurosurgery 71(4):795–803Google Scholar
  82. 82.
    Veeravagu A, Chen YR, Ludwig C, Rincon F, Maltenfort M, Jallo J, Choudhri O, Steinberg GK, Ratliff JK (2014) Acute lung injury in patients with subarachnoid hemorrhage: a nationwide inpatient sample study. World Neurosurgery 82(1–2):e235–e241Google Scholar
  83. 83.
    Elizabeth Wilcox M, Brummel NE, Archer K, Wesley Ely E, Jackson JC, Hopkins RO (2013) Cognitive dysfunction in ICU patients: risk factors, predictors, and rehabilitation interventions. Crit Care Med 41(9 SUPPL 1):S81–S98Google Scholar
  84. 84.
    Young N, Rhodes JKJ, Mascia L, Andrews PJD (2010) Ventilatory strategies for patients with acute brain injury. Curr Opin Crit Care 16(1):45–52Google Scholar
  85. 85.
    Corradi F, Robba C, Tavazzi G, Via G (2018) Combined lung and brain ultrasonography for an individualized ‘brain-protective ventilation strategy’ in neurocritical care patients with challenging ventilation needs. Crit Ultrasound J 10(1):24Google Scholar
  86. 86.
    Schramm P, Closhen D, Felkel M, Berres M, Klein KU, David M, Werner C, Engelhard K (2013) Influence of PEEP on cerebral blood flow and cerebrovascular autoregulation in patients with acute respiratory distress syndrome. J Neurosurg Anesthesiol 25(2):162–167Google Scholar
  87. 87.
    Young GB, Bolton CF, Archibald YM, Austin TW, Wells GA (1992) The electroencephalogram in sepsis-associated encephalopathy. J Clin Neurophysiol 9(1):145–152Google Scholar
  88. 88.
    Robba C, Crippa IA, Taccone FS (2018) Septic Encephalopathy. Curr. Neurol. Neurosci. Rep. 18(12):82Google Scholar
  89. 89.
    Pfister D, Siegemund M, Dell-Kuster S, Smielewski P, Rüegg S, Strebel SP, Marsch SCU, Pargger H, Steiner LA (2008) Cerebral perfusion in sepsis-associated delirium. Crit Care 12(3):R63Google Scholar
  90. 90.
    Scalea TM, Rodriguez A, Chiu WC, Brenneman FD, Fallon WF, Kato K, McKenney MG, Nerlich ML, Ochsner MG, Yoshii H (1999) Focused assessment with sonography for trauma (FAST): results from an International Consensus Conference. J Trauma Inj Infect Crit Care 46(3):466–472Google Scholar
  91. 91.
    Neri L, Storti E, Lichtenstein D (2007) Toward an ultrasound curriculum for critical care medicine. Crit Care Med 35(Suppl):S290–S304Google Scholar
  92. 92.
    Bouzat P, Almeras L, Manhes P, Sanders L, Levrat A, David JS, Cinotti R, Chabanne R, Gloaguen A, Bobbia X, Thoret S, Oujamaa L, Bosson JL, Payen JF (2016) Transcranial Doppler to predict neurologic outcome after mild to moderate traumatic brain injury. Anesthesiology 125(2):346–354Google Scholar
  93. 93.
    Houzé-Cerfon CH, Bounes V, Guemon J, Le Gourrierec T, Geeraerts T (2018) Quality and feasibility of sonographic measurement of the optic nerve sheath diameter to estimate the risk of raised intracranial pressure after traumatic brain injury in prehospital setting. Prehosp Emerg Care 23:277–283Google Scholar
  94. 94.
    Pou JL, Centellas JA, Sans MP, Barcena JP, Vivas MC, Ramirez JH, Juve JI (2004) Monitoring midline shift by transcranial color-coded sonography in traumatic brain injury. Intensive Care Med 30(8):1672–1675Google Scholar
  95. 95.
    Tazarourte K, Atchabahian A, Tourtier JP, David JS, Ract C, Savary D, Monchi M, Vigué B (2011) Pre-hospital transcranial Doppler in severe traumatic brain injury: a pilot study. Acta Anaesthesiol Scand 55(4):422–428Google Scholar
  96. 96.
    Rasulo FA, Bertuetti R, Robba C, Lusenti F, Cantoni A, Bernini M, Girardini A, Calza S, Piva S, Fagoni N, Latronico N (2017) The accuracy of transcranial Doppler in excluding intracranial hypertension following acute brain injury: a multicenter prospective pilot study. Crit Care 21(1):44Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Anaesthesia and Intensive Care, Ospedale Policlinico San Martino IRCCS, San Martino Policlinico Hospital, IRCCS for OncologyUniversity of GenoaGenoaItaly
  2. 2.Interdepartmental Division of Critical Care MedicineUniversity of TorontoTorontoCanada
  3. 3.Department of Anaesthesia and Intensive Care, University Hospital of Toulouse, Toulouse NeuroImaging Center (ToNIC), Inserm-UPSUniversity Toulouse 3-Paul SabatierToulouseFrance
  4. 4.Department of Anesthesiology, Pharmacology and Therapeutics, Vancouver General HospitalUniversity of British ColumbiaVancouverCanada
  5. 5.Cardiac Anesthesia and Intensive Care, Fondazione Cardiocentro TicinoLuganoSwitzerland
  6. 6.Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical NeurosciencesCambridge Biomedical Campus, Addenbrooke’s Hospital, University of CambridgeCambridgeUK
  7. 7.Division of Critical Care and Hospitalist Neurology, Department of NeurologyColumbia UniversityNew YorkUSA
  8. 8.Department of NeurologyWake Forest Baptist Medical CenterWinston SalemUSA
  9. 9.Department of Neurosurgery, Faculty of Health SciencesUniversity of Pretoria, Steve Biko Academic HospitalPretoriaSouth Africa
  10. 10.Department of Anaesthesia, Intensive Care and Emergency MedicineSpedali Civili University Hospital of BresciaBresciaItaly
  11. 11.School of Medicine and SurgeryUniversity of Milano BicoccaMilanItaly

Personalised recommendations