Intensive Care Medicine

, Volume 45, Issue 6, pp 757–769 | Cite as

Obesity in the critically ill: a narrative review

  • Miet SchetzEmail author
  • Audrey De Jong
  • Adam M. Deane
  • Wilfried Druml
  • Pleun Hemelaar
  • Paolo Pelosi
  • Peter Pickkers
  • Annika Reintam-Blaser
  • Jason Roberts
  • Yasser Sakr
  • Samir Jaber


The World Health Organization defines overweight and obesity as the condition where excess or abnormal fat accumulation increases risks to health. The prevalence of obesity is increasing worldwide and is around 20% in ICU patients. Adipose tissue is highly metabolically active, and especially visceral adipose tissue has a deleterious adipocyte secretory profile resulting in insulin resistance and a chronic low-grade inflammatory and procoagulant state. Obesity is strongly linked with chronic diseases such as type 2 diabetes, hypertension, cardiovascular diseases, dyslipidemia, non-alcoholic fatty liver disease, chronic kidney disease, obstructive sleep apnea and hypoventilation syndrome, mood disorders and physical disabilities. In hospitalized and ICU patients and in patients with chronic illnesses, a J-shaped relationship between BMI and mortality has been demonstrated, with overweight and moderate obesity being protective compared with a normal BMI or more severe obesity (the still debated and incompletely understood “obesity paradox”). Despite this protective effect regarding mortality, in the setting of critical illness morbidity is adversely affected with increased risk of respiratory and cardiovascular complications, requiring adapted management. Obesity is associated with increased risk of AKI and infection, may require adapted drug dosing and nutrition and is associated with diagnostic and logistic challenges. In addition, negative attitudes toward obese patients (the social stigma of obesity) affect both health care workers and patients.


Obesity Critically ill Mortality paradox Complications 


Compliance with ethical standards

Conflicts of interest

Dr. Jaber reports receiving consulting fees from Drager, Fisher & Paykel and Xenios. P. Pickkers reports receiving travel reimbursements and consulting fees from AM-Pharma, Baxter, Adrenomed and EBI. J. Roberts has received grant funding from, or has consulted for, MSD, Cardeas Pharma, Accelerate Diagnostics, Pfizer, Astellas, Bayer and Biomerieux. A. Reintam-Blaser received consulting and speaker fees from Fresenius Kabi and Nestlé and a research grant (to University of Tartu, Estonia) from Fresenius Kabi. No potential conflict of interest was reported for other authors.

Ethical approval

An approval by an ethics committee was not applicable.


  1. 1.
    Batsis JA, Villareal DT (2018) Sarcopenic obesity in older adults: aetiology, epidemiology and treatment strategies. Nat Rev Endocrinol 14:513–537CrossRefGoogle Scholar
  2. 2.
    Piche ME, Poirier P, Lemieux I, Despres JP (2018) Overview of epidemiology and contribution of obesity and body fat distribution to cardiovascular disease: an update. Prog Cardiovasc Dis 61:103–113CrossRefGoogle Scholar
  3. 3.
    Neeland IJ, Poirier P, Despres JP (2018) Cardiovascular and metabolic heterogeneity of obesity: clinical challenges and implications for management. Circulation 137:1391–1406CrossRefGoogle Scholar
  4. 4.
    Sakr Y, Alhussami I, Nanchal R, Wunderink RG, Pellis T, Wittebole X, Martin-Loeches I, Francois B, Leone M, Vincent JL (2015) Being overweight is associated with greater survival in ICU patients: results from the intensive care over nations audit. Crit Care Med 43:2623–2632CrossRefGoogle Scholar
  5. 5.
    De Jong A, Verzilli D, Sebbane M, Monnin M, Belafia F, Cisse M, Conseil M, Carr J, Jung B, Chanques G, Molinari N, Jaber S (2018) Medical versus surgical ICU obese patient outcome: a propensity-matched analysis to resolve clinical trial controversies. Crit Care Med 46:e294–e301CrossRefGoogle Scholar
  6. 6.
    Rosvall BR, Forgie K, MacLeod JB, Yip AM, Aguiar C, Lutchmedial S, Brown C, Forgie R, Legare JF, Hassan A (2017) Impact of obesity on intensive care unit resource utilization after cardiac operations. Ann Thorac Surg 104:2009–2015CrossRefGoogle Scholar
  7. 7.
    Heymsfield SB, Wadden TA (2017) Mechanisms, pathophysiology, and management of obesity. N Engl J Med 376:254–266CrossRefGoogle Scholar
  8. 8.
    Sharma A, Lavie CJ, Borer JS, Vallakati A, Goel S, Lopez-Jimenez F, Arbab-Zadeh A, Mukherjee D, Lazar JM (2015) Meta-analysis of the relation of body mass index to all-cause and cardiovascular mortality and hospitalization in patients with chronic heart failure. Am J Cardiol 115:1428–1434CrossRefGoogle Scholar
  9. 9.
    Romero-Corral A, Montori VM, Somers VK, Korinek J, Thomas RJ, Allison TG, Mookadam F, Lopez-Jimenez F (2006) Association of bodyweight with total mortality and with cardiovascular events in coronary artery disease: a systematic review of cohort studies. Lancet 368:666–678CrossRefGoogle Scholar
  10. 10.
    Naderi N, Kleine CE, Park C, Hsiung JT, Soohoo M, Tantisattamo E, Streja E, Kalantar-Zadeh K, Moradi H (2018) Obesity paradox in advanced kidney disease: from bedside to the bench. Prog Cardiovasc Dis 61:168–181CrossRefGoogle Scholar
  11. 11.
    Nie W, Zhang Y, Jee SH, Jung KJ, Li B, Xiu Q (2014) Obesity survival paradox in pneumonia: a meta-analysis. BMC Med 12:61CrossRefGoogle Scholar
  12. 12.
    Pepper DJ, Sun J, Welsh J, Cui X, Suffredini AF, Eichacker PQ (2016) Increased body mass index and adjusted mortality in ICU patients with sepsis or septic shock: a systematic review and meta-analysis. Crit Care 20:181CrossRefGoogle Scholar
  13. 13.
    Ni YN, Luo J, Yu H, Wang YW, Hu YH, Liu D, Liang BM, Liang ZA (2017) Can body mass index predict clinical outcomes for patients with acute lung injury/acute respiratory distress syndrome? A meta-analysis. Crit Care 21:36CrossRefGoogle Scholar
  14. 14.
    Hogue CW, Stearns JD, Colantuoni E, Robinson KA, Stierer T, Mitter N, Pronovost PJ, Needham DM (2009) The impact of obesity on outcomes after critical illness: a meta-analysis. Intensive Care Med 35:1152–1170CrossRefGoogle Scholar
  15. 15.
    Wacharasint P, Boyd JH, Russell JA, Walley KR (2013) One size does not fit all in severe infection: obesity alters outcome, susceptibility, treatment, and inflammatory response. Crit Care 17:R122CrossRefGoogle Scholar
  16. 16.
    Marques MB, Langouche L (2013) Endocrine, metabolic, and morphologic alterations of adipose tissue during critical illness. Crit Care Med 41:317–325CrossRefGoogle Scholar
  17. 17.
    Alipoor E, Mohammad Hosseinzadeh F, Hosseinzadeh-Attar MJ (2018) Adipokines in critical illness: a review of the evidence and knowledge gaps. Biomed Pharmacother 108:1739–1750CrossRefGoogle Scholar
  18. 18.
    Fantuzzi G (2005) Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol 115:911–919 (quiz 920) CrossRefGoogle Scholar
  19. 19.
    Stapleton RD, Dixon AE, Parsons PE, Ware LB, Suratt BT (2010) The association between BMI and plasma cytokine levels in patients with acute lung injury. Chest 138:568–577CrossRefGoogle Scholar
  20. 20.
    Murch O, Collin M, Hinds CJ, Thiemermann C (2007) Lipoproteins in inflammation and sepsis. I. Basic science. Intensive Care Med 33:13–24CrossRefGoogle Scholar
  21. 21.
    Pepin JL, Timsit JF, Tamisier R, Borel JC, Levy P, Jaber S (2016) Prevention and care of respiratory failure in obese patients. Lancet Respir Med 4:407–418CrossRefGoogle Scholar
  22. 22.
    De Jong A, Chanques G, Jaber S (2017) Mechanical ventilation in obese ICU patients: from intubation to extubation. Crit Care 21:63CrossRefGoogle Scholar
  23. 23.
    Bazurro S, Ball L, Pelosi P (2018) Perioperative management of obese patient. Curr Opin Crit Care 24:560–567CrossRefGoogle Scholar
  24. 24.
    Mullen JT, Moorman DW, Davenport DL (2009) The obesity paradox: body mass index and outcomes in patients undergoing nonbariatric general surgery. Ann Surg 250:166–172CrossRefGoogle Scholar
  25. 25.
    Zhi G, Xin W, Ying W, Guohong X, Shuying L (2016) “Obesity paradox” in acute respiratory distress syndrome: a systematic review and meta-analysis. PLoS One 11:e0163677CrossRefGoogle Scholar
  26. 26.
    Ball L, Serpa Neto A, Pelosi P (2017) Obesity and survival in critically ill patients with acute respiratory distress syndrome: a paradox within the paradox. Crit Care 21:114CrossRefGoogle Scholar
  27. 27.
    De Jong A, Molinari N, Pouzeratte Y, Verzilli D, Chanques G, Jung B, Futier E, Perrigault PF, Colson P, Capdevila X, Jaber S (2015) Difficult intubation in obese patients: incidence, risk factors, and complications in the operating theatre and in intensive care units. Br J Anaesth 114:297–306CrossRefGoogle Scholar
  28. 28.
    Delay JM, Sebbane M, Jung B, Nocca D, Verzilli D, Pouzeratte Y, Kamel ME, Fabre JM, Eledjam JJ, Jaber S (2008) The effectiveness of noninvasive positive pressure ventilation to enhance preoxygenation in morbidly obese patients: a randomized controlled study. Anesth Analg 107:1707–1713CrossRefGoogle Scholar
  29. 29.
    Jaber S, Monnin M, Girard M, Conseil M, Cisse M, Carr J, Mahul M, Delay JM, Belafia F, Chanques G, Molinari N, De Jong A (2016) Apnoeic oxygenation via high-flow nasal cannula oxygen combined with non-invasive ventilation preoxygenation for intubation in hypoxaemic patients in the intensive care unit: the single-centre, blinded, randomised controlled OPTINIV trial. Intensive Care Med 42:1877–1887CrossRefGoogle Scholar
  30. 30.
    Pelosi P, Croci M, Ravagnan I, Cerisara M, Vicardi P, Lissoni A, Gattinoni L (1997) Respiratory system mechanics in sedated, paralyzed, morbidly obese patients. J Appl Physiol 82:811–818CrossRefGoogle Scholar
  31. 31.
    Pirrone M, Fisher D, Chipman D, Imber DA, Corona J, Mietto C, Kacmarek RM, Berra L (2016) Recruitment maneuvers and positive end-expiratory pressure titration in morbidly obese ICU patients. Crit Care Med 44:300–307CrossRefGoogle Scholar
  32. 32.
    Pereira SM, Tucci MR, Morais CCA, Simoes CM, Tonelotto BFF, Pompeo MS, Kay FU, Pelosi P, Vieira JE, Amato MBP (2018) Individual positive end-expiratory pressure settings optimize intraoperative mechanical ventilation and reduce postoperative atelectasis. Anesthesiology 129:1070–1081CrossRefGoogle Scholar
  33. 33.
    Futier E, Constantin JM, Pelosi P, Chanques G, Massone A, Petit A, Kwiatkowski F, Bazin JE, Jaber S (2011) Noninvasive ventilation and alveolar recruitment maneuver improve respiratory function during and after intubation of morbidly obese patients: a randomized controlled study. Anesthesiology 114:1354–1363CrossRefGoogle Scholar
  34. 34.
    Ball L, Hemmes SNT, Serpa Neto A, Bluth T, Canet J, Hiesmayr M, Hollmann MW, Mills GH, Vidal Melo MF, Putensen C, Schmid W, Severgnini P, Wrigge H, Gama de Abreu M, Schultz MJ, Pelosi P (2018) Intraoperative ventilation settings and their associations with postoperative pulmonary complications in obese patients. Br J Anaesth 121:899–908CrossRefGoogle Scholar
  35. 35.
    Jaber S, Bellani G, Blanch L, Demoule A, Esteban A, Gattinoni L, Guérin C, Hill N, Laffey JG, Maggiore SM, Mancebo J, Mayo PH, Mosier JM, Navalesi P, Quintel M, Vincent JL, Marini JJ (2017) The intensive care medicine research agenda for airways, invasive and noninvasive mechanical ventilation. Intensive Care Med 43:1352–1365CrossRefGoogle Scholar
  36. 36.
    Bime C, Fiero M, Lu Z, Oren E, Berry CE, Parthasarathy S, Garcia JGN (2017) High positive end-expiratory pressure is associated with improved survival in obese patients with acute respiratory distress syndrome. Am J Med 130:207–213CrossRefGoogle Scholar
  37. 37.
    De Jong A, Cossic J, Verzilli D, Monet C, Carr J, Conseil M, Monnin M, Cisse M, Belafia F, Molinari N, Chanques G, Jaber S (2018) Impact of the driving pressure on mortality in obese and non-obese ARDS patients: a retrospective study of 362 cases. Intensive Care Med 44:1106–1114CrossRefGoogle Scholar
  38. 38.
    Fumagalli J, Berra L, Zhang C, Pirrone M, Santiago RRS, Gomes S, Magni F, Dos Santos GAB, Bennett D, Torsani V, Fisher D, Morais C, Amato MBP, Kacmarek RM (2017) Transpulmonary pressure describes lung morphology during decremental positive end-expiratory pressure trials in obesity. Crit Care Med 45:1374–1381CrossRefGoogle Scholar
  39. 39.
    De Jong A, Molinari N, Sebbane M, Prades A, Futier E, Jung B, Chanques G, Jaber S (2013) Feasibility and effectiveness of prone position in morbidly obese patients with ARDS: a case–control clinical study. Chest 143:1554–1561CrossRefGoogle Scholar
  40. 40.
    Kon ZN, Dahi S, Evans CF, Byrnes KA, Bittle GJ, Wehman B, Rector RP, McCormick BM, Herr DL, Sanchez PG, Pham SM, Griffith BP (2015) Class III obesity is not a contraindication to venovenous extracorporeal membrane oxygenation support. Ann Thorac Surg 100:1855–1860CrossRefGoogle Scholar
  41. 41.
    Corley A, Bull T, Spooner AJ, Barnett AG, Fraser JF (2015) Direct extubation onto high-flow nasal cannulae post-cardiac surgery versus standard treatment in patients with a BMI ≥ 30: a randomised controlled trial. Intensive Care Med 41:887–894CrossRefGoogle Scholar
  42. 42.
    Carrillo A, Ferrer M, Gonzalez-Diaz G, Lopez-Martinez A, Llamas N, Alcazar M, Capilla L, Torres A (2012) Noninvasive ventilation in acute hypercapnic respiratory failure caused by obesity hypoventilation syndrome and chronic obstructive pulmonary disease. Am J Respir Crit Care Med 186:1279–1285CrossRefGoogle Scholar
  43. 43.
    Stephan F, Berard L, Rezaiguia-Delclaux S, Amaru P (2017) High-flow nasal cannula therapy versus intermittent noninvasive ventilation in obese subjects after cardiothoracic surgery. Respir Care 62:1193–1202CrossRefGoogle Scholar
  44. 44.
    Bur A, Hirschl MM, Herkner H, Oschatz E, Kofler J, Woisetschlager C, Laggner AN (2000) Accuracy of oscillometric blood pressure measurement according to the relation between cuff size and upper-arm circumference in critically ill patients. Crit Care Med 28:371–376CrossRefGoogle Scholar
  45. 45.
    Tejedor A, Rivas E, Rios J, Arismendi E, Martinez-Palli G, Delgado S, Balust J (2015) Accuracy of Vigileo/Flotrac monitoring system in morbidly obese patients. J Crit Care 30:562–566CrossRefGoogle Scholar
  46. 46.
    Nelson J, Billeter AT, Seifert B, Neuhaus V, Trentz O, Hofer CK, Turina M (2012) Obese trauma patients are at increased risk of early hypovolemic shock: a retrospective cohort analysis of 1,084 severely injured patients. Crit Care 16:R77CrossRefGoogle Scholar
  47. 47.
    Adams C, Tucker C, Allen B, McRae A, Balazh J, Horst S, Johnson D, Ferreira J (2017) Disparities in hemodynamic resuscitation of the obese critically ill septic shock patient. J Crit Care 37:219–223CrossRefGoogle Scholar
  48. 48.
    Winfield RD, Delano MJ, Dixon DJ, Schierding WS, Cendan JC, Lottenberg L, Lopez MC, Baker HV, Cobb JP, Moldawer LL, Maier RV, Cuschieri J (2010) Differences in outcome between obese and nonobese patients following severe blunt trauma are not consistent with an early inflammatory genomic response. Crit Care Med 38:51–58CrossRefGoogle Scholar
  49. 49.
    Taylor SP, Karvetski CH, Templin MA, Heffner AC, Taylor BT (2018) Initial fluid resuscitation following adjusted body weight dosing is associated with improved mortality in obese patients with suspected septic shock. J Crit Care 43:7–12CrossRefGoogle Scholar
  50. 50.
    Radosevich JJ, Patanwala AE, Erstad BL (2016) Norepinephrine dosing in obese and nonobese patients with septic shock. Am J Crit Care 25:27–32CrossRefGoogle Scholar
  51. 51.
    Lu JL, Molnar MZ, Naseer A, Mikkelsen MK, Kalantar-Zadeh K, Kovesdy CP (2015) Association of age and BMI with kidney function and mortality: a cohort study. Lancet Diabetes Endocrinol 3:704–714CrossRefGoogle Scholar
  52. 52.
    Kovesdy CP, Furth SL, Zoccali C (2017) Obesity and kidney disease: hidden consequences of the epidemic. Kidney Dis (Basel) 3:33–41CrossRefGoogle Scholar
  53. 53.
    Druml W, Metnitz B, Schaden E, Bauer P, Metnitz PG (2010) Impact of body mass on incidence and prognosis of acute kidney injury requiring renal replacement therapy. Intensive Care Med 36:1221–1228CrossRefGoogle Scholar
  54. 54.
    Danziger J, Chen KP, Lee J, Feng M, Mark RG, Celi LA, Mukamal KJ (2016) Obesity, acute kidney injury, and mortality in critical illness. Crit Care Med 44:328–334CrossRefGoogle Scholar
  55. 55.
    McGuire TR, Brusnahan SK, Bilek LD, Jackson JD, Kessinger MA, Berger AM, Garvin KL, O’Kane BJ, Tuljapurkar SR, Sharp JG (2011) Inflammation associated with obesity: relationship with blood and bone marrow endothelial cells. Obesity (Silver Spring) 19:2130–2136CrossRefGoogle Scholar
  56. 56.
    Serrano PE, Khuder SA, Fath JJ (2010) Obesity as a risk factor for nosocomial infections in trauma patients. J Am Coll Surg 211:61–67CrossRefGoogle Scholar
  57. 57.
    Sheridan PA, Paich HA, Handy J, Karlsson EA, Hudgens MG, Sammon AB, Holland LA, Weir S, Noah TL, Beck MA (2012) Obesity is associated with impaired immune response to influenza vaccination in humans. Int J Obes (Lond) 36:1072–1077CrossRefGoogle Scholar
  58. 58.
    Fezeu L, Julia C, Henegar A, Bitu J, Hu FB, Grobbee DE, Kengne AP, Hercberg S, Czernichow S (2011) Obesity is associated with higher risk of intensive care unit admission and death in influenza A (H1N1) patients: a systematic review and meta-analysis. Obes Rev 12:653–659CrossRefGoogle Scholar
  59. 59.
    Green WD, Beck MA (2017) Obesity altered T cell metabolism and the response to infection. Curr Opin Immunol 46:1–7CrossRefGoogle Scholar
  60. 60.
    Cascio V, Hon M, Haramati LB, Gour A, Spiegler P, Bhalla S, Katz DS (2018) Imaging of suspected pulmonary embolism and deep venous thrombosis in obese patients. Br J Radiol 91:20170956CrossRefGoogle Scholar
  61. 61.
    Venclauskas L, Maleckas A, Arcelus JI (2018) European guidelines on perioperative venous thromboembolism prophylaxis: surgery in the obese patient. Eur J Anaesthesiol 35:147–153Google Scholar
  62. 62.
    Ji Y, Cheng B, Xu Z, Ye H, Lu W, Luo X, Fu S, Fang X (2018) Impact of sarcopenic obesity on 30-day mortality in critically ill patients with intra-abdominal sepsis. J Crit Care 46:50–54CrossRefGoogle Scholar
  63. 63.
    McClave SA, Taylor BE, Martindale RG, Warren MM, Johnson DR, Braunschweig C, McCarthy MS, Davanos E, Rice TW, Cresci GA, Gervasio JM, Sacks GS, Roberts PR, Compher C (2016) Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: society of critical care medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). JPEN J Parenter Enteral Nutr 40:159–211CrossRefGoogle Scholar
  64. 64.
    Singer P, Blaser AR, Berger MM, Alhazzani W, Calder PC, Casaer MP, Hiesmayr M, Mayer K, Montejo JC, Pichard C, Preiser JC, van Zanten ARH, Oczkowski S, Szczeklik W, Bischoff SC (2019) ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr 38:48–79CrossRefGoogle Scholar
  65. 65.
    Reintam Blaser A, Starkopf J, Alhazzani W, Berger MM, Casaer MP, Deane AM, Fruhwald S, Hiesmayr M, Ichai C, Jakob SM, Loudet CI, Malbrain ML, Montejo Gonzalez JC, Paugam-Burtz C, Poeze M, Preiser JC, Singer P, van Zanten AR, De Waele J, Wendon J, Wernerman J, Whitehouse T, Wilmer A, Oudemans-van Straaten HM (2017) Early enteral nutrition in critically ill patients: ESICM clinical practice guidelines. Intensive Care Med 43:380–398CrossRefGoogle Scholar
  66. 66.
    Goossens C, Vander Perre S, Van den Berghe G, Langouche L (2017) Proliferation and differentiation of adipose tissue in prolonged lean and obese critically ill patients. Intensive Care Med Exp 5:16CrossRefGoogle Scholar
  67. 67.
    Dickerson RN, Medling TL, Smith AC, Maish GO 3rd, Croce MA, Minard G, Brown RO (2013) Hypocaloric, high-protein nutrition therapy in older vs younger critically ill patients with obesity. JPEN J Parenter Enteral Nutr 37:342–351CrossRefGoogle Scholar
  68. 68.
    Arabi YM, Casaer MP, Chapman M, Heyland DK, Ichai C, Marik PE, Martindale RG, McClave SA, Preiser JC, Reignier J, Rice TW, Van den Berghe G, van Zanten ARH, Weijs PJM (2017) The intensive care medicine research agenda in nutrition and metabolism. Intensive Care Med 43:1239–1256CrossRefGoogle Scholar
  69. 69.
    Cho S-J, Yoon I-S, Kim DD (2013) Obesity-relaed physiological changes and their pharmacokinetic consequences. J Pharmaceut Investig 43:161–169CrossRefGoogle Scholar
  70. 70.
    Pai MP (2012) Drug dosing based on weight and body surface area: mathematical assumptions and limitations in obese adults. Pharmacotherapy 32:856–868CrossRefGoogle Scholar
  71. 71.
    Roberts JA, Abdul-Aziz MH, Lipman J, Mouton JW, Vinks AA, Felton TW, Hope WW, Farkas A, Neely MN, Schentag JJ, Drusano G, Frey OR, Theuretzbacher U, Kuti JL (2014) Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. Lancet Infect Dis 14:498–509CrossRefGoogle Scholar
  72. 72.
    Parienti JJ, Thirion M, Megarbane B, Souweine B, Ouchikhe A, Polito A, Forel JM, Marque S, Misset B, Airapetian N, Daurel C, Mira JP, Ramakers M, du Cheyron D, Le Coutour X, Daubin C, Charbonneau P (2008) Femoral vs jugular venous catheterization and risk of nosocomial events in adults requiring acute renal replacement therapy: a randomized controlled trial. JAMA 299:2413–2422CrossRefGoogle Scholar
  73. 73.
    Shea JM, Gagnon M (2015) Working with patients living with obesity in the intensive care unit: a study of nurses’ experiences. ANS Adv Nurs Sci 38:E17–E37CrossRefGoogle Scholar
  74. 74.
    Hales C, de Vries K, Coombs M (2016) Managing social awkwardness when caring for morbidly obese patients in intensive care: a focused ethnography. Int J Nurs Stud 58:82–89CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Miet Schetz
    • 1
    Email author
  • Audrey De Jong
    • 2
  • Adam M. Deane
    • 3
    • 4
  • Wilfried Druml
    • 5
  • Pleun Hemelaar
    • 6
  • Paolo Pelosi
    • 7
    • 8
  • Peter Pickkers
    • 6
    • 9
  • Annika Reintam-Blaser
    • 10
    • 11
  • Jason Roberts
    • 12
    • 13
    • 14
    • 15
  • Yasser Sakr
    • 16
  • Samir Jaber
    • 2
  1. 1.Division of Cellular and Molecular Medicine, Clinical Department and Laboratory of Intensive Care MedicineKU Leuven UniversityLeuvenBelgium
  2. 2.Anesthesia and Critical Care Department (DAR-B)Saint Eloi, University of Montpellier, Research Unit: PhyMedExp, INSERM U-1046, CNRSMontpellier Cedex 5France
  3. 3.Department of Medicine and Radiology, Melbourne Medical School, Royal Melbourne HospitalThe University of MelbourneParkvilleAustralia
  4. 4.Department of Medicine (Royal Melbourne Hospital)University of MelbourneParkvilleAustralia
  5. 5.Klinik für Innere Medizin III, Abteilung für Nephrologie, Allgemeines Krankenhaus WienViennaAustria
  6. 6.Department of Intensive Care Medicine (710)Radboud University Medical CentreNijmegenThe Netherlands
  7. 7.Department of Surgical Sciences and Integrated DiagnosticsUniversity of GenoaGenoaItaly
  8. 8.Anesthesia and Intensive Care, San Martino Policlinico HospitalIRCCS for Oncology and Neurosciences, GenoaGenoaItaly
  9. 9.Radboud Center for Infectious DiseasesNijmegenThe Netherlands
  10. 10.Department of Intensive Care MedicineLucerne Cantonal HospitalLucerneSwitzerland
  11. 11.Department of Anaesthesiology and Intensive CareUniversity of TartuTartuEstonia
  12. 12.University of Queensland Centre for Clinical Research, Faculty of MedicineUniversity of QueenslandHerstonAustralia
  13. 13.Centre for Translational Anti-infective Pharmacodynamics, School of PharmacyThe University of QueenslandWoolloongabbaAustralia
  14. 14.Pharmacy DepartmentRoyal Brisbane and Women’s HospitalBrisbaneAustralia
  15. 15.Departments of Intensive Care MedicineRoyal Brisbane and Women’s HospitalBrisbaneAustralia
  16. 16.Department of Anesthesiology and Intensive CareUniklinikum JenaJenaGermany

Personalised recommendations