Advertisement

Intensive Care Medicine

, Volume 44, Issue 11, pp 1870–1878 | Cite as

A multicenter randomized controlled trial of a 3-L/kg/min versus 2-L/kg/min high-flow nasal cannula flow rate in young infants with severe viral bronchiolitis (TRAMONTANE 2)

  • Christophe Milési
  • Anne-Florence Pierre
  • Anna Deho
  • Robin Pouyau
  • Jean-Michel Liet
  • Camille Guillot
  • Anne-Sophie Guilbert
  • Jérôme Rambaud
  • Astrid Millet
  • Mickael Afanetti
  • Julie Guichoux
  • Mathieu Genuini
  • Thierry Mansir
  • Jean Bergounioux
  • Fabrice Michel
  • Marie-Odile Marcoux
  • Julien Baleine
  • Sabine Durand
  • Philippe Durand
  • Stéphane Dauger
  • Etienne Javouhey
  • Stéphane Leteurtre
  • Olivier Brissaud
  • Sylvain Renolleau
  • Aurélie Portefaix
  • Aymeric Douillard
  • Gilles CambonieEmail author
  • for the GFRUP Respiratory Study Group
Seven-Day Profile Publication

Abstract

Purpose

High-flow nasal cannula (HFNC) therapy is increasingly proposed as first-line respiratory support for infants with acute viral bronchiolitis (AVB). Most teams use 2 L/kg/min, but no study compared different flow rates in this setting. We hypothesized that 3 L/kg/min would be more efficient for the initial management of these patients.

Methods

A randomized controlled trial was performed in 16 pediatric intensive care units (PICUs) to compare these two flow rates in infants up to 6 months old with moderate to severe AVB and treated with HFNC. The primary endpoint was the percentage of failure within 48 h of randomization, using prespecified criteria of worsening respiratory distress and discomfort.

Results

From November 2016 to March 2017, 142 infants were allocated to the 2-L/kg/min (2L) flow rate and 144 to the 3-L/kg/min (3L) flow rate. Failure rate was comparable between groups: 38.7% (2L) vs. 38.9% (3L; p = 0.98). Worsening respiratory distress was the most common cause of failure in both groups: 49% (2L) vs. 39% (3L; p = 0.45). In the 3L group, discomfort was more frequent (43% vs. 16%, p = 0.002) and PICU stays were longer (6.4 vs. 5.3 days, p = 0.048). The intubation rates [2.8% (2L) vs. 6.9% (3L), p = 0.17] and durations of invasive [0.2 (2L) vs. 0.5 (3L) days, p = 0.10] and noninvasive [1.4 (2L) vs. 1.6 (3L) days, p = 0.97] ventilation were comparable. No patient had air leak syndrome or died.

Conclusion

In young infants with AVB supported with HFNC, 3 L/kg/min did not reduce the risk of failure compared with 2 L/kg/min. This clinical trial was recorded on the National Library of Medicine registry (NCT02824744).

Keywords

Bronchiolitis High-flow nasal cannula Infant Noninvasive ventilation Oxygen inhalation therapy Randomized controlled trial Respiratory syncytial virus Respiratory therapy 

Notes

Acknowledgements

Members of the GFRUP Respiratory Study Group contributed substantially to the study design, data interpretation, manuscript revision, and final approval. The Group includes, in addition to the authors of the manuscript, the following members: Guillaume Emeriaud, MD, PhD (Division of Pediatric Critical Care, Department of Pediatrics, Sainte-Justine University Hospital, University of Montréal, Montréal, QC, Canada); Philippe Jouvet, MD, PhD (Division of Pediatric Critical Care, Department of Pediatrics, Sainte-Justine University Hospital, University of Montréal, QC, Canada); Marti Pons Odena, MD, PhD (Pediatric Intensive Care Unit, Hospital Universitario Sant Joan de Deu University Hospital, Barcelona, Spain); Florent Baudin, MD (Pediatric Intensive Care Unit, Women-Mothers & Children’s University Hospital, Lyon, France); Chloe Genier, GN (Pediatric Intensive Care Unit, Women & Children’s University Hospital, Nantes, France); and Ingrid Nissen, MD (Pediatric Intensive Care Unit, St. Olav's University Hospital, Trondheim, Norway).

Author contributions

CM, JB, SD, and GC conceptualized and designed the study, coordinated and supervised the data collection at their respective investigation sites, drafted the initial manuscript, and approved the final manuscript as submitted. AD carried out the initial analyses, reviewed and revised the manuscript, and approved the final manuscript as submitted. AFP, AD, RP, JML, CG, ASG, JR, AM, MA, JG, MG, TM, JB, FM, MOM, PD, SD, EJ, AP, SL, OB, and SR coordinated and supervised the data collection at their respective investigation sites, critically reviewed the manuscript, and approved the final manuscript as submitted. All authors approved the final manuscript as submitted and agree to be accountable for all aspects of the work.

Funding

All phases of this study were supported by the University Hospital Center of Montpellier (Grant: research contract 2012–2015).

Compliance with ethical standards

Conflicts of interest

The authors have no financial relationships and no potential conflicts of interest relevant to this article to disclose.

References

  1. 1.
    Meissner HC (2016) Viral bronchiolitis in children. N Engl J Med 374:62–72CrossRefGoogle Scholar
  2. 2.
    Franklin D, Babl FE, Schlapbach LJ et al (2018) A randomized trial of high-flow oxygen therapy in infants with bronchiolitis. N Engl J Med 378:1121–1131CrossRefGoogle Scholar
  3. 3.
    Thia LP, McKenzie SA, Blyth TP, Minasian CC, Kozlowska WJ, Carr SB (2008) Randomised controlled trial of nasal continuous positive airways pressure (CPAP) in bronchiolitis. Arch Dis Child 93:45–47CrossRefGoogle Scholar
  4. 4.
    Cambonie G, Milési C, Jaber S et al (2008) Nasal continuous positive airway pressure decreases respiratory muscles overload in young infants with severe acute viral bronchiolitis. Intensive Care Med 34:1865–1872CrossRefGoogle Scholar
  5. 5.
    Essouri S, Durand P, Chevret L et al (2011) Optimal level of nasal continuous positive airway pressure in severe viral bronchiolitis. Intensive Care Med 37:2002–2007CrossRefGoogle Scholar
  6. 6.
    Milési C, Matecki S, Jaber S et al (2013) 6 cmH2O continuous positive airway pressure versus conventional oxygen therapy in severe viral bronchiolitis: a randomized trial. Pediatr Pulmonol 48:45–51CrossRefGoogle Scholar
  7. 7.
    Milési C, Baleine J, Matecki S et al (2013) Is treatment with a high flow nasal cannula effective in acute viral bronchiolitis? A physiologic study. Intensive Care Med 39:1088–1094CrossRefGoogle Scholar
  8. 8.
    Hough JL, Pham TM, Schibler A (2014) Physiologic effect of high-flow nasal cannula in infants with bronchiolitis. Pediatr Crit Care Med 15:e214–e219CrossRefGoogle Scholar
  9. 9.
    Pham TM, O’Malley L, Mayfield S, Martin S, Schibler A (2015) The effect of high flow nasal cannula therapy on the work of breathing in infants with bronchiolitis. Pediatr Pulmonol 50:713–720CrossRefGoogle Scholar
  10. 10.
    Sinha IP, McBride AKS, Smith R, Fernandes RM (2015) CPAP and high-flow nasal cannula oxygen in bronchiolitis. Chest 148:810–823CrossRefGoogle Scholar
  11. 11.
    Milési C, Essouri S, Pouyau R et al (2017) High flow nasal cannula (HFNC) versus nasal continuous positive airway pressure (nCPAP) for the initial respiratory management of acute viral bronchiolitis in young infants: a multicenter randomized controlled trial (TRAMONTANE study). Intensive Care Med 43:209–216CrossRefGoogle Scholar
  12. 12.
    Milési C, Boubal M, Jacquot A et al (2014) High-flow nasal cannula: recommendations for daily practice in pediatrics. Ann Intensive Care 4:29CrossRefGoogle Scholar
  13. 13.
    Essouri S, Laurent M, Chevret L et al (2014) Improved clinical and economic outcomes in severe bronchiolitis with pre-emptive nCPAP ventilatory strategy. Intensive Care Med 40:84–91CrossRefGoogle Scholar
  14. 14.
    Ralston SL, Lieberthal AS, Meissner HC et al (2014) Clinical practice guideline: the diagnosis, management, and prevention of bronchiolitis. Pediatrics 134:e1474–e1502CrossRefGoogle Scholar
  15. 15.
    Hollman G, Shen G, Zeng L et al (1998) Helium-oxygen improves Clinical Asthma Scores in children with acute bronchiolitis. Crit Care Med 26:1731–1736CrossRefGoogle Scholar
  16. 16.
    Debillon T, Zupan V, Ravault N, Magny JF, Dehan M (2001) Development and initial validation of the EDIN scale, a new tool for assessing prolonged pain in preterm infants. Arch Dis Child Fetal Neonatal Ed 85:F36–F41CrossRefGoogle Scholar
  17. 17.
    Black J, Baharestani MM, Cuddigan J et al (2007) National Pressure Ulcer Advisory Panel’s updated pressure ulcer staging system. Adv Skin Wound Care 20:269–274CrossRefGoogle Scholar
  18. 18.
    O’Driscoll BR, Howard LS, Davison AG, British Thoracic Society (2008) BTS guideline for emergency oxygen use in adult patients. Thorax 63(Suppl 6):vi1–vi68.  https://doi.org/10.1136/thx.2008.102947 CrossRefPubMedGoogle Scholar
  19. 19.
    te Pas AB, Wong C, Kamlin CO, Dawson JA, Morley CJ, Davis PG (2009) Breathing patterns in preterm and term infants immediately after birth. Pediatr Res 65:352–356CrossRefGoogle Scholar
  20. 20.
    Schmalisch G, Wilitzki S, Wauer RR (2005) Differences in tidal breathing between infants with chronic lung diseases and healthy controls. BMC Pediatr 5:36CrossRefGoogle Scholar
  21. 21.
    Ramnarayan P, Schibler A (2017) Glass half empty or half full? The story of high-flow nasal cannula therapy in critically ill children. Intensive Care Med 43:246–249CrossRefGoogle Scholar
  22. 22.
    Abboud PA, Roth PJ, Skiles CL, Stolfi A, Rowin ME (2012) Predictors of failure in infants with viral bronchiolitis treated with high-flow, high-humidity nasal cannula therapy. Pediatr Crit Care Med 13:e343–e349CrossRefGoogle Scholar
  23. 23.
    ten Brink F, Duke T, Evans J (2013) High-flow nasal prong oxygen therapy or nasopharyngeal continuous positive airway pressure for children with moderate-to-severe respiratory distress? Pediatr Crit Care Med 14:e326–e331CrossRefGoogle Scholar
  24. 24.
    Bressan S, Balzani M, Krauss B, Pettenazzo A, Zanconato S, Baraldi E (2013) High-flow nasal cannula oxygen for bronchiolitis in a pediatric ward: a pilot study. Eur J Pediatr 172:1649–1656CrossRefGoogle Scholar
  25. 25.
    Mayfield S, Bogossian F, O’Malley L, Schibler A (2014) High-flow nasal cannula oxygen therapy for infants with bronchiolitis: pilot study. J Paediatr Child Health 50:373–378CrossRefGoogle Scholar
  26. 26.
    Kepreotes E, Whitehead B, Attia J et al (2017) High-flow warm humidified oxygen versus standard low-flow nasal cannula oxygen for moderate bronchiolitis (HFWHO RCT): an open, phase 4, randomised controlled trial. Lancet 389:930–939CrossRefGoogle Scholar
  27. 27.
    Collins CL, Holberton JR, Barfield C, Davis PG (2013) A randomized controlled trial to compare heated humidified high-flow nasal cannulae with nasal continuous positive airway pressure postextubation in premature infants. J Pediatr 162(949–954):e1Google Scholar
  28. 28.
    Manley BJ, Owen LS, Doyle LW et al (2013) High-flow nasal cannulae in very preterm infants after extubation. N Engl J Med 369:1425–1433CrossRefGoogle Scholar
  29. 29.
    Mauri T, Alban L, Turrini C et al (2017) Optimum support by high-flow nasal cannula in acute hypoxemic respiratory failure: effects of increasing flow rates. Intensive Care Med 43:1453–1463CrossRefGoogle Scholar
  30. 30.
    Hammer J, Numa A, Newth CJ (1997) Acute respiratory distress syndrome caused by respiratory syncytial virus. Pediatr Pulmonol 23:176–183CrossRefGoogle Scholar
  31. 31.
    Lee JH, Rehder KJ, Williford L, Cheifetz IM, Turner DA (2013) Use of high flow nasal cannula in critically ill infants, children, and adults: a critical review of the literature. Intensive Care Med 39:247–257CrossRefGoogle Scholar
  32. 32.
    Frizzola M, Miller TL, Rodriguez ME et al (2011) High-flow nasal cannula: impact on oxygenation and ventilation in an acute lung injury model. Pediatr Pulmonol 46:67–74CrossRefGoogle Scholar
  33. 33.
    Yoder BA, Stoddard RA, Li M, King J, Dirnberger DR, Abbasi S (2013) Heated, humidified high-flow nasal cannula versus nasal CPAP for respiratory support in neonates. Pediatrics 131:e1482–e1490CrossRefGoogle Scholar
  34. 34.
    Kugelman A, Riskin A, Said W, Shoris I, Mor F, Bader D (2015) A randomized pilot study comparing heated humidified high-flow nasal cannulae with NIPPV for RDS. Pediatr Pulmonol 50:576–583CrossRefGoogle Scholar
  35. 35.
    Betters KA, Hebbar KB, McCracken C, Heitz D, Sparacino S, Petrillo T (2017) A novel weaning protocol for high-flow nasal cannula in the PICU. Pediatr Crit Care Med 18:e274–e280CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature and ESICM 2018

Authors and Affiliations

  • Christophe Milési
    • 1
  • Anne-Florence Pierre
    • 2
  • Anna Deho
    • 3
  • Robin Pouyau
    • 4
  • Jean-Michel Liet
    • 5
  • Camille Guillot
    • 6
  • Anne-Sophie Guilbert
    • 7
  • Jérôme Rambaud
    • 8
  • Astrid Millet
    • 9
  • Mickael Afanetti
    • 10
  • Julie Guichoux
    • 11
  • Mathieu Genuini
    • 12
  • Thierry Mansir
    • 13
  • Jean Bergounioux
    • 14
  • Fabrice Michel
    • 15
  • Marie-Odile Marcoux
    • 16
  • Julien Baleine
    • 1
  • Sabine Durand
    • 1
  • Philippe Durand
    • 2
  • Stéphane Dauger
    • 3
  • Etienne Javouhey
    • 4
  • Stéphane Leteurtre
    • 6
  • Olivier Brissaud
    • 11
  • Sylvain Renolleau
    • 12
  • Aurélie Portefaix
    • 17
  • Aymeric Douillard
    • 18
  • Gilles Cambonie
    • 1
    Email author
  • for the GFRUP Respiratory Study Group
  1. 1.Department of Neonatal Medicine and Pediatric Intensive CareArnaud de Villeneuve University HospitalMontpellier Cedex 5France
  2. 2.Pediatric Intensive Care UnitKremlin Bicêtre University HospitalParisFrance
  3. 3.Pediatric Intensive Care UnitRobert Debré University HospitalParisFrance
  4. 4.Pediatric Intensive Care UnitWomen-Mother-Child University HospitalLyonFrance
  5. 5.Pediatric Intensive Care UnitWomen-Child University HospitalNantesFrance
  6. 6.Pediatric Intensive Care UnitJeanne de Flandre University HospitalLilleFrance
  7. 7.Pediatric Intensive Care UnitHautepierre University HospitalStrasbourgFrance
  8. 8.Pediatric Intensive Care UnitArmand Trousseau University HospitalParisFrance
  9. 9.Pediatric Intensive Care UnitLa Tronche University HospitalGrenobleFrance
  10. 10.Pediatric Intensive Care UnitLenval University HospitalNiceFrance
  11. 11.Pediatric Intensive Care UnitChildren’s University HospitalBordeauxFrance
  12. 12.Pediatric Intensive Care UnitNecker-Sick Children University HospitalParisFrance
  13. 13.Pediatric Intensive Care UnitGeneral Hospital of PauPauFrance
  14. 14.Pediatric Intensive Care UnitRaymond Poincaré University HospitalGarchesFrance
  15. 15.Pediatric Intensive Care UnitLa Timone University HospitalMarseilleFrance
  16. 16.Pediatric Intensive Care UnitChildren’s University HospitalToulouseFrance
  17. 17.INSERM, CIC1407BronFrance
  18. 18.Department of Medical InformationArnaud de Villeneuve University HospitalMontpellierFrance

Personalised recommendations