Advertisement

Intensive Care Medicine

, Volume 44, Issue 11, pp 1797–1806 | Cite as

Small volume resuscitation with 20% albumin in intensive care: physiological effects

The SWIPE randomised clinical trial
  • Johan MårtenssonEmail author
  • Shailesh Bihari
  • Jonathan Bannard-Smith
  • Neil J. Glassford
  • Patryck Lloyd-Donald
  • Luca Cioccari
  • Nora Luethi
  • Aiko Tanaka
  • Marco Crisman
  • Nicolas Rey de Castro
  • Marcus Ottochian
  • Agnes Huang
  • Maria Cronhjort
  • Andrew D. Bersten
  • Shivesh Prakash
  • Michael Bailey
  • Glenn M. Eastwood
  • Rinaldo Bellomo
Original

Abstract

Purpose

We set out to assess the resuscitation fluid requirements and physiological and clinical responses of intensive care unit (ICU) patients resuscitated with 20% albumin versus 4–5% albumin.

Methods

We performed a randomised controlled trial in 321 adult patients requiring fluid resuscitation within 48 h of admission to three ICUs in Australia and the UK.

Results

The cumulative volume of resuscitation fluid at 48 h (primary outcome) was lower in the 20% albumin group than in the 4–5% albumin group [median difference − 600 ml, 95% confidence interval (CI) − 800 to − 400; P < 0.001]. The 20% albumin group had lower cumulative fluid balance at 48 h (mean difference − 576 ml, 95% CI − 1033 to − 119; P = 0.01). Peak albumin levels were higher but sodium and chloride levels lower in the 20% albumin group. Median (interquartile range) duration of mechanical ventilation was 12.0 h (7.6, 33.1) in the 20% albumin group and 15.3 h (7.7, 58.1) in the 4–5% albumin group (P = 0.13); the proportion of patients commenced on renal replacement therapy after randomization was 3.3% and 4.2% (P = 0.67), respectively, and the proportion discharged alive from ICU was 97.4% and 91.1% (P = 0.02).

Conclusions

Resuscitation with 20% albumin decreased resuscitation fluid requirements, minimized positive early fluid balance and was not associated with any evidence of harm compared with 4–5% albumin. These findings support the safety of further exploration of resuscitation with 20% albumin in larger randomised trials.

Trial registration

http://www.anzctr.org.au. Identifier ACTRN12615000349549.

Keywords

Albumin Fluid therapy Critical care Resuscitation 

Notes

Acknowledgements

The Australian and New Zealand Intensive Care Foundation and CSL Behring (UK) funded the study. The SWIPE trial investigators would like to thank Dr Ying Yan Zhu and Dr Jason Musci for their help with obtaining consent from patients and relatives, and Elisha Matheson, Kate Schwartz and Kate Norman from Flinders Medical Centre and Leah Peck and Helen Young from Austin Hospital for their help with data collection.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Supplementary material

134_2018_5253_MOESM1_ESM.docx (84 kb)
Supplementary material 1 (DOCX 83 kb)
134_2018_5253_MOESM2_ESM.docx (129 kb)
Supplementary material 2 (DOCX 129 kb)

References

  1. 1.
    Chelazzi C, Villa G, Mancinelli P, De Gaudio AR, Adembri C (2015) Glycocalyx and sepsis-induced alterations in vascular permeability. Crit Care 19:26CrossRefGoogle Scholar
  2. 2.
    Finfer S, Bellomo R, Boyce N, French J, Myburgh J, Norton R (2004) A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med 350:2247–2256CrossRefGoogle Scholar
  3. 3.
    Caironi P, Tognoni G, Masson S, Fumagalli R, Pesenti A, Romero M, Fanizza C, Caspani L, Faenza S, Grasselli G, Iapichino G, Antonelli M, Parrini V, Fiore G, Latini R, Gattinoni L (2014) Albumin replacement in patients with severe sepsis or septic shock. N Engl J Med 370:1412–1421CrossRefGoogle Scholar
  4. 4.
    Baron JF, De Kegel D, Prost AC, Mundler O, Arthaud M, Basset G, Maistre G, Masson F, Carayon A, Landault C et al (1991) Low molecular weight hydroxyethyl starch 6% compared to albumin 4% during intentional hemodilution. Intensive Care Med 17:141–148CrossRefGoogle Scholar
  5. 5.
    Rehm M, Orth V, Kreimeier U, Thiel M, Haller M, Brechtelsbauer H, Finsterer U (2000) Changes in intravascular volume during acute normovolemic hemodilution and intraoperative retransfusion in patients with radical hysterectomy. Anesthesiology 92:657–664CrossRefGoogle Scholar
  6. 6.
    Rehm M, Haller M, Orth V, Kreimeier U, Jacob M, Dressel H, Mayer S, Brechtelsbauer H, Finsterer U (2001) Changes in blood volume and hematocrit during acute preoperative volume loading with 5% albumin or 6% hetastarch solutions in patients before radical hysterectomy. Anesthesiology 95:849–856CrossRefGoogle Scholar
  7. 7.
    Riddez L, Hahn RG, Brismar B, Strandberg A, Svensen C, Hedenstierna G (1997) Central and regional hemodynamics during acute hypovolemia and volume substitution in volunteers. Crit Care Med 25:635–640CrossRefGoogle Scholar
  8. 8.
    Jacob M, Chappell D, Hofmann-Kiefer K, Helfen T, Schuelke A, Jacob B, Burges A, Conzen P, Rehm M (2012) The intravascular volume effect of Ringer’s lactate is below 20%: a prospective study in humans. Crit Care 16:R86CrossRefGoogle Scholar
  9. 9.
    Margarson MP, Soni NC (2004) Changes in serum albumin concentration and volume expanding effects following a bolus of albumin 20% in septic patients. Br J Anaesth 92:821–826CrossRefGoogle Scholar
  10. 10.
    Bannard-Smith J, Alexander P, Glassford N, Chan MJ, Lee M, Wong BT, Crawford G, Bailey M, Bellomo R (2015) Haemodynamic and biochemical responses to fluid bolus therapy with human albumin solution, 4% versus 20%, in critically ill adults. Crit Care Resusc 17:122–128PubMedGoogle Scholar
  11. 11.
    Payen D, de Pont AC, Sakr Y, Spies C, Reinhart K, Vincent JL (2008) A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit Care 12:R74CrossRefGoogle Scholar
  12. 12.
    Bellomo R, Cass A, Cole L, Finfer S, Gallagher M, Lee J, Lo S, McArthur C, McGuiness S, Norton R, Myburgh J, Scheinkestel C, Su S (2012) An observational study fluid balance and patient outcomes in the randomized evaluation of normal vs. augmented level of replacement therapy trial. Crit Care Med 40:1753–1760CrossRefGoogle Scholar
  13. 13.
    Acheampong A, Vincent JL (2015) A positive fluid balance is an independent prognostic factor in patients with sepsis. Crit Care 19:251CrossRefGoogle Scholar
  14. 14.
    Garzotto F, Ostermann M, Martin-Langerwerf D, Sanchez-Sanchez M, Teng J, Robert R, Marinho A, Herrera-Gutierrez ME, Mao HJ, Benavente D, Kipnis E, Lorenzin A, Marcelli D, Tetta C, Ronco C (2016) The dose response multicentre investigation on fluid assessment (DoReMIFA) in critically ill patients. Crit Care 20:196CrossRefGoogle Scholar
  15. 15.
    Silversides JA, Major E, Ferguson AJ, Mann EE, McAuley DF, Marshall JC, Blackwood B, Fan E (2017) Conservative fluid management or deresuscitation for patients with sepsis or acute respiratory distress syndrome following the resuscitation phase of critical illness: a systematic review and meta-analysis. Intensive Care Med 43:155–170CrossRefGoogle Scholar
  16. 16.
    Moran M, Kapsner C (1987) Acute renal failure associated with elevated plasma oncotic pressure. N Engl J Med 317:150–153CrossRefGoogle Scholar
  17. 17.
    Schortgen F, Girou E, Deye N, Brochard L, Group CS (2008) The risk associated with hyperoncotic colloids in patients with shock. Intensive Care Med 34:2157–2168CrossRefGoogle Scholar
  18. 18.
    Honore PM, Joannes-Boyau O, Boer W (2008) Hyperoncotic colloids in shock and risk of renal injury: enough evidence for a banning order? Intensive Care Med 34:2127–2129CrossRefGoogle Scholar
  19. 19.
    Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Sevransky JE, Sprung CL, Douglas IS, Jaeschke R, Osborn TM, Nunnally ME, Townsend SR, Reinhart K, Kleinpell RM, Angus DC, Deutschman CS, Machado FR, Rubenfeld GD, Webb S, Beale RJ, Vincent JL, Moreno R (2013) Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med 39:165–228CrossRefGoogle Scholar
  20. 20.
    Kellum JA, Lameire N (2013) Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (part 1). Crit Care 17:204CrossRefGoogle Scholar
  21. 21.
    Myburgh JA, Finfer S, Bellomo R, Billot L, Cass A, Gattas D, Glass P, Lipman J, Liu B, McArthur C, McGuinness S, Rajbhandari D, Taylor CB, Webb SA (2012) Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med 367:1901–1911CrossRefGoogle Scholar
  22. 22.
    Bihari S, Prakash S, Bersten AD (2013) Post resuscitation fluid boluses in severe sepsis or septic shock: prevalence and efficacy (price study). Shock 40:28–34CrossRefGoogle Scholar
  23. 23.
    Hjortrup PB, Haase N, Bundgaard H, Thomsen SL, Winding R, Pettila V, Aaen A, Lodahl D, Berthelsen RE, Christensen H, Madsen MB, Winkel P, Wetterslev J, Perner A, CLASSIC Trial Group, Scandinavian Critical Care Trials Group (2016) Restricting volumes of resuscitation fluid in adults with septic shock after initial management: the CLASSIC randomised, parallel-group, multicentre feasibility trial. Intensive Care Med 42:1695–1705CrossRefGoogle Scholar
  24. 24.
    Martensson J, Bellomo R (2015) Are all fluids bad for the kidney? Curr Opin Crit Care 21:292–301CrossRefGoogle Scholar
  25. 25.
    Bihari S, Prakash S, Bersten AD (2014) Early changes in serum electrolytes and acid–base status with administration of 4% albumin. Intensive Care Med 40:1392–1393CrossRefGoogle Scholar
  26. 26.
    Mallat J, Meddour M, Lemyze M, Durville E, Pepy F, Temime J, Vangrunderbeeck N, Tronchon L, Thevenin D (2016) Effects of a rapid infusion of 20% human serum albumin solution on acid–base status and electrolytes in critically ill patients. Intensive Care Med 42:128–129CrossRefGoogle Scholar
  27. 27.
    Wilcox CS (1983) Regulation of renal blood flow by plasma chloride. J Clin Invest 71:726–735CrossRefGoogle Scholar
  28. 28.
    Yunos NM, Bellomo R, Glassford N, Sutcliffe H, Lam Q, Bailey M (2015) Chloride-liberal vs. chloride-restrictive intravenous fluid administration and acute kidney injury: an extended analysis. Intensive Care Med 41:257–264CrossRefGoogle Scholar
  29. 29.
    Shaw AD, Bagshaw SM, Goldstein SL, Scherer LA, Duan M, Schermer CR, Kellum JA (2012) Major complications, mortality, and resource utilization after open abdominal surgery: 0.9% saline compared to Plasma-Lyte. Ann Surg 255:821–829CrossRefGoogle Scholar
  30. 30.
    Young P, Bailey M, Beasley R, Henderson S, Mackle D, McArthur C, McGuinness S, Mehrtens J, Myburgh J, Psirides A, Reddy S, Bellomo R (2015) Effect of a buffered crystalloid solution vs saline on acute kidney injury among patients in the intensive care unit: the SPLIT randomized clinical trial. JAMA 314:1701–1710CrossRefGoogle Scholar
  31. 31.
    Semler MW, Wanderer JP, Ehrenfeld JM, Stollings JL, Self WH, Siew ED, Wang L, Byrne DW, Shaw AD, Bernard GR, Rice TW, SALT Investigators, The Pragmatic Critical Care Research Group (2017) Balanced crystalloids versus saline in the intensive care unit. The SALT randomized trial. Am J Respir Crit Care Med 195:1362–1372CrossRefGoogle Scholar
  32. 32.
    Self WH, Semler MW, Wanderer JP, Wang L, Byrne DW, Collins SP, Slovis CM, Lindsell CJ, Ehrenfeld JM, Siew ED, Shaw AD, Bernard GR, Rice TW, SALT-ED Investigators (2018) Balanced crystalloids versus saline in noncritically ill adults. N Engl J Med 378:819–828CrossRefGoogle Scholar
  33. 33.
    Semler MW, Self WH, Wanderer JP, Ehrenfeld JM, Wang L, Byrne DW, Stollings JL, Kumar AB, Hughes CG, Hernandez A, Guillamondegui OD, May AK, Weavind L, Casey JD, Siew ED, Shaw AD, Bernard GR, Rice TW, SMART Investigators, The Pragmatic Critical Care Research Group (2018) Balanced crystalloids versus saline in critically ill adults. N Engl J Med 378:829–839CrossRefGoogle Scholar
  34. 34.
    Lawrence MG, Altenburg MK, Sanford R, Willett JD, Bleasdale B, Ballou B, Wilder J, Li F, Miner JH, Berg UB, Smithies O (2017) Permeation of macromolecules into the renal glomerular basement membrane and capture by the tubules. Proc Natl Acad Sci USA 114:2958–2963CrossRefGoogle Scholar
  35. 35.
    Lee EH, Kim WJ, Kim JY, Chin JH, Choi DK, Sim JY, Choo SJ, Chung CH, Lee JW, Choi IC (2016) Effect of exogenous albumin on the incidence of postoperative acute kidney injury in patients undergoing off-pump coronary artery bypass surgery with a preoperative albumin level of less than 4.0 g/dl. Anesthesiology 124:1001–1011CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature and ESICM 2018

Authors and Affiliations

  • Johan Mårtensson
    • 1
    • 2
    • 13
    Email author return OK on get
  • Shailesh Bihari
    • 3
    • 4
  • Jonathan Bannard-Smith
    • 5
  • Neil J. Glassford
    • 1
  • Patryck Lloyd-Donald
    • 1
  • Luca Cioccari
    • 1
    • 6
  • Nora Luethi
    • 1
  • Aiko Tanaka
    • 1
    • 7
  • Marco Crisman
    • 1
  • Nicolas Rey de Castro
    • 5
  • Marcus Ottochian
    • 1
  • Agnes Huang
    • 1
  • Maria Cronhjort
    • 1
    • 8
  • Andrew D. Bersten
    • 3
    • 4
  • Shivesh Prakash
    • 3
    • 4
  • Michael Bailey
    • 10
    • 11
  • Glenn M. Eastwood
    • 1
  • Rinaldo Bellomo
    • 1
    • 9
    • 10
    • 11
    • 12
  1. 1.Department of Intensive CareAustin HospitalMelbourneAustralia
  2. 2.Department of Physiology and Pharmacology, Section of Anaesthesia and Intensive CareKarolinska InstitutetStockholmSweden
  3. 3.Department of Intensive and Critical Care UnitFlinders Medical CentreAdelaideAustralia
  4. 4.Department of Critical Care MedicineFlinders UniversityAdelaideAustralia
  5. 5.Department of Intensive Care, Manchester Royal InfirmaryCentral Manchester University HospitalsManchesterUK
  6. 6.Department of Intensive Care Medicine, University HospitalUniversity of BernBernSwitzerland
  7. 7.Department of Anesthesiology and Intensive Care MedicineOsaka UniversityOsakaJapan
  8. 8.Department of Clinical Science and Education Södersjukhuset, Section of Anaesthesia and Intensive CareKarolinska InstitutetStockholmSweden
  9. 9.Department of Intensive CareRoyal Melbourne HospitalMelbourneAustralia
  10. 10.Australian and New Zealand Intensive Care Research CentreMonash University School of Public Health and Preventive MedicineMelbourneAustralia
  11. 11.School of MedicineThe University of MelbourneMelbourneAustralia
  12. 12.Data Analytics, Research and Evaluation (DARE) CentreUniversity of Melbourne and Austin HospitalMelbourneAustralia
  13. 13.Function Perioperative Medicine and Intensive CareKarolinska University HospitalStockholmSweden

Personalised recommendations