Advertisement

Intensive Care Medicine

, Volume 44, Issue 6, pp 774–790 | Cite as

Diagnostic workup, etiologies and management of acute right ventricle failure

A state-of-the-art paper
  • Antoine Vieillard-Baron
  • R. Naeije
  • F. Haddad
  • H. J. Bogaard
  • T. M. Bull
  • N. Fletcher
  • T. Lahm
  • S. Magder
  • S. Orde
  • G. Schmidt
  • M. R. Pinsky
Review

Abstract

Introduction

This is a state-of-the-art article of the diagnostic process, etiologies and management of acute right ventricular (RV) failure in critically ill patients. It is based on a large review of previously published articles in the field, as well as the expertise of the authors.

Results

The authors propose the ten key points and directions for future research in the field. RV failure (RVF) is frequent in the ICU, magnified by the frequent need for positive pressure ventilation. While no universal definition of RVF is accepted, we propose that RVF may be defined as a state in which the right ventricle is unable to meet the demands for blood flow without excessive use of the Frank–Starling mechanism (i.e. increase in stroke volume associated with increased preload). Both echocardiography and hemodynamic monitoring play a central role in the evaluation of RVF in the ICU. Management of RVF includes treatment of the causes, respiratory optimization and hemodynamic support. The administration of fluids is potentially deleterious and unlikely to lead to improvement in cardiac output in the majority of cases. Vasopressors are needed in the setting of shock to restore the systemic pressure and avoid RV ischemia; inotropic drug or inodilator therapies may also be needed. In the most severe cases, recent mechanical circulatory support devices are proposed to unload the RV and improve organ perfusion

Conclusion

RV function evaluation is key in the critically-ill patients for hemodynamic management, as fluid optimization, vasopressor strategy and respiratory support. RV failure may be diagnosed by the association of different devices and parameters, while echocardiography is crucial.

Keywords

Right ventricle failure Pulmonary hypertension Critically ill patients Echocardiography Shock 

Notes

Compliance with ethical standards

Conflicts of interest

AVB has received Grant from GSK for conducting clinical research and is membership of the scientific advisory board. RN has relationship with drug companies including AOPOrphan Pharmaceuticals, Actelion, Reata, Lung Biotechnology Corporation and United Therapeutics. In addition to being investigator in trials involving these companies, relationships include consultancy service, research Grants, and membership of scientific advisory board. FH declares no conflict of interest with regards to the content of this manuscript. HJB declares research Grants from Actelion, GSK, Therabell and speaker fees from Actelion, GSK. TMB declares investigator initiated Grant from Bayer Pharmaceuticals NF declares no conflict of interest. TL declares conflict of interest with Bayer (speaker bureau), Actelion (consulting), Gilled (scientific review committee) and Eli Lilly (research reagents). SM declares no conflict of interest with regards to the content of this manuscript. SO declares no conflict of interest. GS declares no conflict of interest with regards to the content of this manuscript. MRP declares no conflict of interest with regards to the content of this manuscript.

References

  1. 1.
    Guyton AC (1955) Determination of cardiac output by equating venous return curves with cardiac response curves. Physiol Rev 35:123–129PubMedCrossRefGoogle Scholar
  2. 2.
    Scharf S, Brown R, Saunders N, Green L (1980) Hemodynamic effects of positive pressure inflation. J Appl Physiol 49:124–131PubMedCrossRefGoogle Scholar
  3. 3.
    Vieillard-Baron A, Chergui K, Augarde R, Prin S, Page B, Beauchet A, Jardin F (2003) Cyclic changes in arterial pulse during respiratory support revisited by Doppler echocardiography. Am J Respir Crit Care Med 168:671–676PubMedCrossRefGoogle Scholar
  4. 4.
    Mercat A, Diehl JL, Meyer G, Teboul JL, Sors H (1999) Hemodynamic effects of fluid loading in acute massive pulmonary embolism. Crit Care Med 27:540–544PubMedCrossRefGoogle Scholar
  5. 5.
    Mahjoub Y, Pila C, Friggeri A, Zogheib E, Lobjoie E, Tinturier F, Galy C, Slama M, Dupont H (2009) Assessing fluid responsiveness in critically ill patients: false-positive pulse pressure variation is detected by Doppler echocardiographic evaluation of the right ventricle. Crit Care Med 37:2570–2575PubMedCrossRefGoogle Scholar
  6. 6.
    Harjola VP, Mebazaa A, Celutkiene J, Bettex D, Bueno H, Chioncel O, Crespo-Leiro MG, Falk V, Filippatos G, Giggs S, Leite-Moreira A, Lassus J, Masip J, Mueller C, Mullens W, Naeije R, Nordegraaf AV, Parissos J, Riley JP, Ristic A, Rosano G, Rudiger A, Ruschitzka F, Seferovic P, SztrymfB Vieillard-Baron A, Yilmaz MB, Konstantinides S (2016) Contemporary management of acute right ventricular failure: a statement from the heart failure association and the working group on pulmonary circulation and right ventricular function of the European Society of Cardiology. Eur J Heart Fail 18:226–241PubMedCrossRefGoogle Scholar
  7. 7.
    Jardin F, Dubourg O, Bourdarias JP (1997) Echocardiographic pattern of acute cor pulmonale. Chest 111:209–217PubMedCrossRefGoogle Scholar
  8. 8.
    Vonk Noordegraaf A, Westerhof BE, Westerhof N (2017) The relationship between the right ventricle and its load in pulmonary hypertension. J Am Coll Cardiol 69:236–243PubMedCrossRefGoogle Scholar
  9. 9.
    Sagawa Maughan, Suga Sunagawa, Sagawa K, Maughan L, Suga H, Sunagawa K (1988) Cardiac contraction and the pressure–volume relationship. Oxford University Press, New YorkGoogle Scholar
  10. 10.
    Friedberg MK, Redington AN (2014) Right versus left ventricular failure: differences, similarities and interactions. Circulation 29:1033–1044CrossRefGoogle Scholar
  11. 11.
    Goldstein JA, Vlahakes GJ, Verrier ED, Schiller NB, Tyberg JV, Ports TA, Parmley WW, Chatterjee K (1982) The role of right ventricular systolic dysfunction and elevated intrapericardial pressure in the genesis of low output in experimental right ventricular infarction. Circulation 65:513–522PubMedCrossRefGoogle Scholar
  12. 12.
    Cross CE (1962) Right ventricular pressure and coronary flow. Am J Physiol 202:12–16PubMedGoogle Scholar
  13. 13.
    Naeije R, Badagliacca R (2017) The overloaded right ventricle and ventricular interdependence. Cardiovasc Res 113:1474–1485PubMedCrossRefGoogle Scholar
  14. 14.
    Naeije R, Manes A (2014) The right ventricle in pulmonary arterial hypertension. Eur Respir Rev 23:476–487PubMedCrossRefGoogle Scholar
  15. 15.
    Ventetuolo CE, Klinger JR (2014) Management of right ventricular failure in the intensive care unit. Ann Thorac Surg 11:811–822Google Scholar
  16. 16.
    Katira BH, Giesinger RE, Engelberts D, Zabini D, Kornecki A, Otulakowski G, Yoshida T, Kuebler WM, McNamara PJ, Connelly KA, Kavanagh BP (2017) Adverse heart-lung interactions in ventilator-induced lung injury. Am J Respir Crit Care Med 196:1411–1421PubMedCrossRefGoogle Scholar
  17. 17.
    Bull TM, Clark B, McFann K, Moss M, National Institutes of Health/National Heart, Lung, and Blood institute ARDS Network (2010) Pulmonary vascular dysfunction is associated with poor outcomes in patients with acute lung injury. Am J Respir Crit Care Med 182:1123–1128PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Repessé X, Charron C, Vieillard-Baron A (2015) Acute cor pulmonale in ARDS: rationale for protecting the right ventricle. Chest 147:259–265PubMedCrossRefGoogle Scholar
  19. 19.
    Price LC, McAuley DF, Marino PS, Finney SJ, Griffiths MS, Wort SJ (2012) Pathophysiology of pulmonary hypertension in acute lung injury. Am J Physiol Lung Cell Mol Physiol 302:L803–L815PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Mekontso-Dessap A, Boissier F, Charron C, Bégot E, Repessé X, Legras A, Brun-Buisson C, Vignon P, Vieillard-Baron A (2016) Acute cor pulmonale during protective ventilation for acute respiratory distress syndrome: prevalence, predictors, and clinical impact. Intensive Care Med 42:862–870PubMedCrossRefGoogle Scholar
  21. 21.
    Boissier F, Katsahian S, Razazi K, Thille AW, Roche-Campo F, Leon R, Vivier E, Brochard L, Vieillard-Baron A, Brun-Buisson C, Mekontso-Dessap A (2013) Prevalence and prognosis of cor pulmonale during protective ventilation for acute respiratory distress syndrome. Intensive Care Med 39:1725–1733PubMedCrossRefGoogle Scholar
  22. 22.
    Kucher N, Rossi E, De Rosa M, Goldhaber SZ (2006) Massive pulmonary embolism. Circulation 113:577–582PubMedCrossRefGoogle Scholar
  23. 23.
    Grifoni S, Olivotto I, Cecchini P, Pieralli F, Camaiti A, Santoro G, Conti A, Agnelli G, Berni G (2000) Short-term clinical outcome of patients with acute pulmonary embolism, normal blood pressure, and echocardiographic right ventricular dysfunction. Circulation 101:2817–2822PubMedCrossRefGoogle Scholar
  24. 24.
    Mekontso-Dessap A, Deux JF, Abidi N, Lavenu-Bombled C, Melica G, Renaud B, Godeau B, Adnot S, Brochard L, Brun-Buisson C, Galacteros F, Rahmouni A, Habibi A, Maitre B (2011) Pulmonary artery thrombosis during acute chest syndrome in sickle cell disease. Am J Respir Crit Care Med 184:1022–1029PubMedCrossRefGoogle Scholar
  25. 25.
    Cecchini J, Boissier F, Gibelin A, de Prost N, Razazi K, Carteau G, Galacteros F, Maitre B, Brun-Buisson C, Mekontiso Dessap A (2016) Pulmonary vascular dysfunction and cor pulmonale during acute respiratory distress syndrome in sicklers. Shock 46:358–364PubMedCrossRefGoogle Scholar
  26. 26.
    Kinch JW, Ryan TJ (1994) Right ventricular infarction. N Engl J Med 330:1211–1217PubMedCrossRefGoogle Scholar
  27. 27.
    Morrison DA, Adcock K, Collins CM, Goldman S, Caldwell JH, Schwarz MI (1987) Right ventricular dysfunction and the exercise limitation of chronic obstructive pulmonary disease. J Am Coll Cardiol 9:1219–1229PubMedCrossRefGoogle Scholar
  28. 28.
    Mohammed SF, Hussain I, Abou Ezzedine OF, Takahama H, Kwon SH, Forfia P, Roger VL, Redfield MM (2014) Right ventricular function in heart failure with preserved ejection fraction: a community-based study. Circulation 130:2310–2320PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Hoeper MM, Granton J (2011) Intensive Care unit management of patients with severe pulmonary hypertension and right heart failure. Am J Respir Crit Care Med 184:1114–1124PubMedCrossRefGoogle Scholar
  30. 30.
    Sztrymf B, Souza R, Bertoletti L, Jaïs X, Sitbon O, Price LC, Simonneau G, Humbert M (2010) Prognostic factors of acute heart failure in patients with pulmonary arterial hypertension. Eur Respir J 35:1286–1293PubMedCrossRefGoogle Scholar
  31. 31.
    Hamon M, Agostini D, Le Page O, Riddell JW, Hamon M (2008) Prognostic impact of right ventricular involvement in patients with acute myocardial infarction: meta-analysis. Crit Care Med 36:2023–2033PubMedCrossRefGoogle Scholar
  32. 32.
    Bougouin W, Aissaoui N, Combes A, Deye N, Lamhaut L, Jost D, Maupain C, Beganton F, Bougle A, Karam N, Dumas F, Marijon E, Jouven X, Cariou A (2017) Post-cardiac arrest shock treated with veno-arterial extracorporeal membrane oxygenation: an observational study and propensity-score analysis. Resuscitation 110:126–132PubMedCrossRefGoogle Scholar
  33. 33.
    Wardi G, Blanchard D, Dittrich T, Kaushal K, Sell R (2016) Right ventricle dysfunction and echocardiographic parameters in the post-cardiac arrest patients: a retrospective cohort study. Resuscitation 103:71–74PubMedCrossRefGoogle Scholar
  34. 34.
    Haddad F, Couture P, Tousignant C, Denault A (2009) The right ventricle in cardiac surgery, a perioperative perspective: II. Pathophysiology, clinical importance, and management. Anesth Analg 108:422–433PubMedCrossRefGoogle Scholar
  35. 35.
    Dávila-Román VG, Waggoner AD, Hopkins WE, Barzilai B (1995) Right ventricular dysfunction in low output syndrome after cardiac operations: assessment by transesophageal echocardiography. Ann Thorac Surg 60:1081–1086PubMedCrossRefGoogle Scholar
  36. 36.
    Kaul TK, Fields BL (2000) Postoperative acute refractory right ventricular failure—incidence, pathogenesis, management and prognosis. Cardiovasc Surg 8:1–9PubMedCrossRefGoogle Scholar
  37. 37.
    Sullivan TP, Moore JE, Klein AA, Jenkins DP, Williams LK, Roscoe A, Tsang W (2017) Evaluation of the clinical utility of transesophageal echocardiography and invasive monitoring to assess right ventricular function during and after pulmonary endarterectomy. J Cardiothorac Vasc Anesth.  https://doi.org/10.1053/j.jvca.2017.09.026 CrossRefPubMedGoogle Scholar
  38. 38.
    Grant AD, Smedira NG, Starling RC, Marwick TH (2012) Independent and incremental role of quantitative right ventricular evaluation for the prediction of right ventricular failure after left ventricular assist device implantation. J Am Coll Cardiol 60:521–528PubMedCrossRefGoogle Scholar
  39. 39.
    The EUROMACS (European Registry for Patients with Mechanical Circulatory Support) right-sided heart failure risk score (2017) Derivation and validation of a novel right-sided heart failure model after implantation of continuous flow left ventricular assist devices. Circulation 136.  https://doi.org/10.1161/circulationaha.117.030543
  40. 40.
    Grignola JC, Domingo E (2017) Acute right ventricular dysfunction in intensive care unit. Biomed Res Int 2017.  https://doi.org/10.1155/2017/8217105
  41. 41.
    Ponikowski P, Voors AA, Anker SD et al (2016) 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 37:2129–2200PubMedCrossRefGoogle Scholar
  42. 42.
    Krishnan S, Schmidt GA (2015) Acute right ventricular dysfunction: real-time management with echocardiography. Chest 147:835–846PubMedCrossRefGoogle Scholar
  43. 43.
    Hoeper MM, Galié N, Murali S, Olschewski H, Rubenfire M, Robbins IM, Farber HW, McLaughlin V, Shapiro S, Pepke-Zaba J, Winkler J, Ewert R, Opotz C, Westerkamp V, Vachiery JL, Torbicki A, Behr J, Barst RJ (2002) Outcome after cardiopulmonary resuscitation in patients with pulmonary arterial hypertension. Am J Respir Crit Care Med 165:341–344PubMedCrossRefGoogle Scholar
  44. 44.
    Tsapenko MV, Tsapenko AV, Comfere TB, Mour GK, Mankad SV, Gajic O (2008) Arterial pulmonary hypertension in noncardiac intensive care unit. Vasc Health Risk Manag 4:1043–1060PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Lang RM, Badano LP, Mor-Avi V, Afilo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzchel ER, Rudski L, Spencer KT, Tsang W, Voigt JU (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28(1–39):e14Google Scholar
  46. 46.
    Levitov A, Frankel HL, Blaivas M, Kirkpatrick AW, Su E, Evans D, Summerfield DT, Slonim A, Breitkreutz R, Price S, McLaughlin M, Marik P, Elbarbary M (2016) Guidelines for the appropriate use of bedside general and cardiac ultrasonography in the evaluation of critically ill patients—part II. 44:1206–1227. Crit Care Med 44:1206–1227PubMedCrossRefGoogle Scholar
  47. 47.
    Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, Solomon SD, Louie EK, Schiller NB (2010) Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 23:685–713PubMedCrossRefGoogle Scholar
  48. 48.
    Pinsky MR (2016) The right ventricle: interaction with the pulmonary circulation. Crit Care 20:1–9Google Scholar
  49. 49.
    Simon MA, Rajagopalan N, Mathier MA, Shroff SG, Pinsky MR, Lopez-Candales A (2009) Tissue Doppler imaging of right ventricular decompensation in pulmonary hypertension. Congest Heart Fail 15:271–276PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Vieillard-Baron A, Slama M, Mayo P, Charron C, Amiel JB, Esterez C, Leleu F, Repessé X, Vignon P (2013) A pilot study on safety and clinical utility of a single-use 72-hour indwelling transesophageal echocardiography probe. Intensive Care Med 39:629–635PubMedCrossRefGoogle Scholar
  51. 51.
    Fletcher N, Geisen M, Meeran H, Spray D, Cecconi M (2015) Initial clinical experience with a miniaturized transesophageal echocardiography probe in a cardiac intensive care unit. J Cardiothorac Vasc Anesth 29:582–587PubMedCrossRefGoogle Scholar
  52. 52.
    Konstantinides SV, Torbicki A, Agnelli G et al (2014) 2014 ESC guidelines on the diagnosis and management of acute pulmonary embolism. Eur Heart J 35:3033–3069PubMedCrossRefGoogle Scholar
  53. 53.
    Lu MT, Cai T, Ersoy H, Whitmore AG, Levit NA, Goldhaber SZ, Rybicki FJ (2009) Comparison of ECG-gated versus non-gated CT ventricular measurements in thirty patients with acute pulmonary embolism. Int J Cardiovasc Imaging 25:101–107PubMedCrossRefGoogle Scholar
  54. 54.
    Kang DK, Thilo C, Schoepf UJ, Barraza M, Nance JW, Bastarrika G, Abro JA, Ravenel JG, Costello P, Goldhaber SZ (2011) CT signs of right ventricular dysfunction: prognostic role in acute pulmonary embolism. JACC Cardiovasc Imaging 4:841–849PubMedCrossRefGoogle Scholar
  55. 55.
    Spruijt OA, Bogaard H-J, Heijmans MW, Lely RJ, van de Veerdonk MC, de Man FS, Westerhof N, Vonk-Noordegraaf A (2015) Predicting pulmonary hypertension with standard computed tomography pulmonary angiography. Int J Cardiovasc Imaging 31:871–879PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Dogan H, de Roos A, Geleijins J, Huisman MV, Kroft LJ (2015) The role of computed tomography in the diagnosis of acute and chronic pulmonary embolism. Diagn Interv Radiol 21:307–316PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Huis In’t Veld AE, Van Vliet AG, Spruijt OA, Handoko ML, Marcus JT, Vonk Noordegraaf A, Bogaard HJ (2016) CTA-derived left to right atrial size ratio distinguishes between pulmonary hypertension due to heart failure and idiopathic pulmonary arterial hypertension. Int J Cardiol 223:723–728CrossRefGoogle Scholar
  58. 58.
    Denault AY, Haddad F, Jacobsohn E, Deschamps A (2013) Perioperative right ventricular dysfunction. Curr Opin Anaesthesiol 26:71–81PubMedCrossRefGoogle Scholar
  59. 59.
    Judge O, Ji F, Fleming N, Liu H (2015) Current use of the pulmonary artery catheter in cardiac surgery: a survey study. J Cardiothorac Vasc Anaesth 29:69–75CrossRefGoogle Scholar
  60. 60.
    Metkus TS, Tampakakis E, Mullin CJ, Houston BA, Kolb TM, Mathai SC, Damico R, Maron BA, Hassoun PM, Brower RG, Tedford RJ (2017) Pulmonary arterial compliance in acute respiratory distress syndrome: clinical determinants and association with outcome from the fluid and catheter treatment trial cohort. Crit Care Med 45:422–429PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Pinsky MR (2017) Exploring the dark side of the moon: pulmonary vascular dysfunction in acute respiratory distress syndrome. Crit Care Med 45:559–561PubMedCrossRefGoogle Scholar
  62. 62.
    Hrymak C, Strumpher J, Jacobsohn E (2017) Acute right ventricle failure in the intensive care unit: assessment and management. Can J Cardiol 33:61–71PubMedCrossRefGoogle Scholar
  63. 63.
    Hoeper MM, Maier R, Tongers J, Niedermeyer J, Hohlfeld JM, Hamm M, Fabel H (1999) Determination of cardiac output by the Fick method, thermodilution, and acetylene rebreathing in pulmonary hypertension. Am J Respir Crit Care Med 160:535–541PubMedCrossRefGoogle Scholar
  64. 64.
    Combes A, Berneau JB, Luyt CE, Trouillet JL (2004) Estimation of left ventricular systolic function by single transpulmonary thermodilution. Intensive Care Med 30:1377–1383PubMedGoogle Scholar
  65. 65.
    Foris V, Kovacs G, Tscherner M, Olschewski A, Olschewski H (2013) Biomarkers in pulmonary hypertension: what do we know? Chest 144:274–283PubMedCrossRefGoogle Scholar
  66. 66.
    Lankeit M, Kempf T, Dellas C, Cuny M, Tapken H, Peter T, Olschewski M, Konstantinides S, Wollert KC (2008) Growth differentiation factor-15 for prognostic assessment of patients with acute pulmonary embolism. Am J Respir Crit Care Med 177:1018–1025PubMedCrossRefGoogle Scholar
  67. 67.
    Lankeit M, Dellas C, Panzenböck A, Skoro-Sajer N, Bonderman D, Olschewski M, Schäfer K, Puis M, Konstantinides S, Lang IM (2008) Heart-type fatty acid-binding protein for risk assessment of chronic thromboembolic pulmonary hypertension. Eur Respir J 31:1024–1029PubMedCrossRefGoogle Scholar
  68. 68.
    Puls M, Dellas C, Lankeit M, Olschewski M, Binder L, Geibel A, Reiner C, Schäfer K, Hasenfuss G, Konstantinides S (2007) Heart-type fatty acid-binding protein permits early risk stratification of pulmonary embolism. Eur Heart J 28:224–229PubMedCrossRefGoogle Scholar
  69. 69.
    Huang SJ, Orde S (2013) From speckle tracking echocardiography to torsion: research tool today, clinical practice tomorrow. Curr Opin Crit Care 19:250–257PubMedCrossRefGoogle Scholar
  70. 70.
    Fine NM, Chen L, Bastiansen PM, Frantz RP, Pellikka PA, Oh JK, Kane GC (2013) Outcome prediction by quantitative right ventricular function assessment in 575 subjects evaluated for pulmonary hypertension. Circ Cardiovasc Imaging 6:711–721PubMedCrossRefGoogle Scholar
  71. 71.
    Orde SR, Pulido JN, Masaki M, Gillepsie S, Spoon JN, Kane GC, Oh JK (2014) Outcome prediction in sepsis: speckle tracking echocardiography based assessment of myocardial function. Crit Care 18:R149PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Amsallem M, Sweatt AJ, Aymani MC, Kuznetsova T, Selej M, Lu HQ, Mercier O, Fadel E, Schnittger I, McConnell MV, Rabinovitch M, Zamanian RT, Haddad F (2017) Right-heart end-systolic remodelling index strongly predicts outcomes in pulmonary arterial hypertension: comparison with validated models. Circ Cardiovasc Imaging 10:e005771.  https://doi.org/10.1161/circimaging.116.005771 PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Shimada YJ, Shiota M, Siegel RJ, Shiota T (2010) Accuracy of right ventricular volumes and function determined by three-dimensional echocardiography in comparison with magnetic resonance imaging: a meta-analysis study. J Am Soc Echocardiogr 23:943–953PubMedCrossRefGoogle Scholar
  74. 74.
    Smith BC, Dobson G, Dawson D, Charalampopoulos A, Grapsa J, Nihoyannopoulos P (2014) Three-dimensional speckle tracking of the right ventricle: toward optimal quantification of right ventricular dysfunction in pulmonary hypertension. J Am Coll Cardiol 64:41–51PubMedCrossRefGoogle Scholar
  75. 75.
    Laser KT, Horst J-P, Barth P, Kelter-Klöpping A, Haas NA, Burchert W, Kececioglu D, Köperich H (2014) Knowledge-based reconstruction of right ventricular volumes using real-time three-dimensional echocardiographic as well as cardiac magnetic resonance images: comparison with a cardiac magnetic resonance standard. J Am Soc Echocardiogr 27:1087–1097PubMedCrossRefGoogle Scholar
  76. 76.
    Vonk Noordegraaf A, Haddad F, Bogaard HJ, Hassoun PM (2015) Noninvasive imaging in the assessment of the cardiopulmonary vascular unit. Circulation 131:899–913PubMedCrossRefGoogle Scholar
  77. 77.
    Galea N, Carbone I, Cannata D, Cannavale G, Conti B, Galea R, Frustaci A, Catalano C, Francone M (2013) Right ventricular cardiovascular magnetic resonance imaging: normal anatomy and spectrum of pathological findings. Insights Imaging 4:213–223PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Spruijt OA, Di Pasqua MC, Bogaard HJ, van der Bruggen CE, Oosterveer F, Marcus JT, Vonk-Noordegraaf A, Handoko ML (2017) Serial assessment of right ventricular systolic function in patients with precapillary pulmonary hypertension using simple echocardiographic parameters: a comparison with cardiac magnetic resonance imaging. J Cardiol 69:182–188PubMedCrossRefGoogle Scholar
  79. 79.
    Spruijt OA, Vissers L, Bogaard HJ, Hofman MB, Vonk-Noordegraaf A, Marcus JT (2016) Increased native T1-values at the interventricular insertion regions in precapillary pulmonary hypertension. Int J Cardiovasc Imaging 32:451–459PubMedCrossRefGoogle Scholar
  80. 80.
    Masci PG, Francone M, Desmet W, Ganame J, Todiere G, Donato R, Siciliano V, Carbone I, Mangia M, Strata E, Catalano C, Lombardi M, Agati L, Janssens S, Bogaert J (2010) Right ventricular ischemic injury in patients with acute ST-segment elevation myocardial infarction: characterization with cardiovascular magnetic resonance. Circulation 122:1405–1412PubMedCrossRefGoogle Scholar
  81. 81.
    Maury E, Arrivé L, Mayo PH (2017) Intensive Care Medicine in 2050: the future of medical imaging. Intensive Care Med 43:1132–1137CrossRefGoogle Scholar
  82. 82.
    D’Angelo T, Grigoratos C, Mazziotti S, Bratis K, Pathan F, Blandino A, Elen E, Puntmann VO, Nagel E (2017) High-throughput gadobutrol-enhanced CMR: a time and dose optimization study. J Cardiovasc Magn Reson 19:83PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Haddad F, Doyle R, Murphy D, Hunt S (2008) Right ventricular function in cardiovascular disease, part II. Pathophysiology, clinical importance, and management of right ventricular failure. Circulation 117:1717–1731PubMedCrossRefGoogle Scholar
  84. 84.
    Dalabih M, Rischard F, Mosier JM (2014) What’s new: the management of acute right ventricular decompensation of chronic pulmonary hypertension. Intensive Care Med 40:1930–1933PubMedCrossRefGoogle Scholar
  85. 85.
    Dell’Italia LJ, Starling MR, Blumhardt R, Lasher JC, O’Rourke RA (1985) Comparative effects of volume loading, dobutamine, and nitroprusside in patients with predominant right ventricular infarction. Circulation 72:1327–1335PubMedCrossRefGoogle Scholar
  86. 86.
    Belenkie I, Dani R, Smith ER, Tyberg JV (1989) Effects of volume loading during experimental acute pulmonary embolism. Circulation 80:178–188PubMedCrossRefGoogle Scholar
  87. 87.
    Mitchell JR, Whitelaw WA, Sas R, Smith ER, Tyberg JV, Belenkie I (2005) RV filling modulates LV function by direct ventricular interaction during mechanical ventilation. Am J Physiol Heart Circ Physiol 289:H549–H557PubMedCrossRefGoogle Scholar
  88. 88.
    Belenkie I, Dani R, Smith ER, Tyberg JV (1988) Ventricular interaction during experimental acute pulmonary embolism. Circulation 8:761–768CrossRefGoogle Scholar
  89. 89.
    Belenkie I, Sas R, Mitchell J, Smith ER, Tyberg JV (2004) Opening the pericardium during pulmonary artery constriction improves cardiac function. J Appl Physiol 96:917–922PubMedCrossRefGoogle Scholar
  90. 90.
    Tyberg JV, Grant DA, Kingma I, Moore TD, Sun Y, Smith ER, Belenkie I (2000) Effects of positive intrathoracic pressure on pulmonary and systemic hemodynamics. Respir Physiol 119:171–179PubMedCrossRefGoogle Scholar
  91. 91.
    Boulate D, Arthur Ataam J, Connolly AJ, Giraldeau G, Amsallem M, Decante B, Lamrani L, Fadel E, Dorfmuller P, Perros F, Haddad F, Mercier O (2017) Early development of right ventricular ischemic lesions in a novel large animal model of acute right heart failure in chronic thromboembolic pulmonary hypertension. J Cardiac Fail 23:876–886CrossRefGoogle Scholar
  92. 92.
    Marik PE, Baram M, Vahid B (2008) Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest 134:172–178PubMedCrossRefGoogle Scholar
  93. 93.
    Monnet X, Marik PE, Teboul JL (2016) Prediction of fluid responsiveness: an update. Ann Intensive Care 6:111PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Vieillard-Baron A, Evrard B, Repessé X, Maizel J, Jacob C, Goudelin M, Charron C, Prat G, Slama M, Geri G, Vignon P (2018) Limited value of end-expiratory inferior vena cava diameter to predict fluid-responsiveness. Impact of intra-abdominal pressure. Intensive Care Med.  https://doi.org/10.1007/s00134-018-5067-2 CrossRefPubMedGoogle Scholar
  95. 95.
    Vignon P, Repessé X, Bégot E, Léger J, Jacob C, Bouferrache K, Slama M, Prat G, Vieillard-Baron A (2017) Comparison of echocardiographic indices used to predict fluid responsiveness in ventilated patients. Am J Respir Crit Care Med 195:1022–1032PubMedCrossRefGoogle Scholar
  96. 96.
    Monnet X, Marik P, Teboul JL (2016) Passive leg raising for predicting fluid responsiveness: a systematic review and meta-analysis. Intensive Care Med 42:1935–1947PubMedCrossRefGoogle Scholar
  97. 97.
    Ghignone M, Girling L, Prewitt RM (1984) Volume expansion versus norepinephrine in treatment of a low cardiac output complicating an acute increase in right ventricular afterload in dogs. Anesthesiology 60:132–135PubMedCrossRefGoogle Scholar
  98. 98.
    Molloy WD, Lee KY, Girling L, Schick U, Prewitt RM (1984) Treatment of shock in a canine model of pulmonary embolism. Am Rev Respir Dis 130:870–874PubMedGoogle Scholar
  99. 99.
    Jardin F, Genevray B, Brun-Ney D, Margairaz A (1985) Dobutamine: a hemodynamic evaluation in pulmonary embolism shock. Crit Care Med 13:1009–1012PubMedCrossRefGoogle Scholar
  100. 100.
    Morelli A, Teboul JL, Maggiore SM, Vieillard-Baron A, Rocco M, Conti G, De Gaetano A, Picchini U, Orecchioni A, Carbone I, Tritapepe L, Pietropaoli P, Westphal M (2006) Effects of levosimendan on right ventricular afterload in patients with acute respiratory distress syndrome: a pilot study. Crit Care Med 34:2287–2293PubMedCrossRefGoogle Scholar
  101. 101.
    Russ M, Prondzinsky R, Carter J et al (2009) Right ventricular function in myocardial infarction complicated by cardiogenic shock: improvement with levosimendan. Crit Care Med 37:3017–3023PubMedCrossRefGoogle Scholar
  102. 102.
    Anderson MB, Goldstein J, Milano C, Morris LD, Kormos RL, Bhama J, Kapur NK, Bansal A, Garcia J, Baker JN, Silvestry S, Holman WL, Douglas PS, O’Neill W (2015) Benefits of a novel percutaneous ventricular assist device for right heart failure: the prospective RECOVER RIGHT study of the Impella RP device. J Heart Lung Transplant 34:1549–1560PubMedCrossRefGoogle Scholar
  103. 103.
    Atiemo AD, Conte JV, Heldman AW (2006) Resuscitation and recovery from acute right ventricular failure using a percutaneous right ventricular assist device. Catheter Cardiovasc Interv 68:78–82PubMedCrossRefGoogle Scholar
  104. 104.
    Giesler GM, Gomez JS, Letsou G, Vooletich M, Smalling RW (2006) Initial report of percutaneous right ventricular assist for right ventricular shock secondary to right ventricular infarction. Catheter Cardiovasc Interv 68:263–266PubMedCrossRefGoogle Scholar
  105. 105.
    Kapur NK, Paruchuri V, Korabathina R, Al-Mohammdi R, Mudd JO, Prutkin J, Esposito M, Shah A, Kiernan MS, Sech C, Pham DT, Konstam MA, Denofrio D (2011) Effect of a percutaneous mechanical circulatory support device for medically refractory right ventricular failure. J Heart Lung Transplant 30:1360–1367PubMedCrossRefGoogle Scholar
  106. 106.
    Jardin F, Vieillard-Baron A (2007) Is there a safe plateau pressure in ARDS? The right heart only knows. Intensive Care Med 33:444–447PubMedCrossRefGoogle Scholar
  107. 107.
    Lejeune P, Brimioulle S, Leeman M, Hallemans R, Melot C, Naeije R (1990) Enhancement of hypoxic pulmonary vasoconstriction by metabolic acidosis in dogs. Anesthesiology 73:256–264PubMedCrossRefGoogle Scholar
  108. 108.
    Morimont P, Guiot J, Desaive T, Tchana-Sato V, Janssen N, Cagina A, Hella D, Blaffart F, Defraigne JO, Lambermont B (2015) Veno-venous extracorporeal CO2 removal improves pulmonary hemodynamics in a porcine ARDS model. Acta Anaesthesiol Scand 59:448–456PubMedCrossRefGoogle Scholar
  109. 109.
    Brimioulle S, Lejeune P, Naeije R (1996) Effects of hypoxic pulmonary vasoconstriction on pulmonary gas exchange. J Appl Physiol (1985) 81:1535–1543CrossRefGoogle Scholar
  110. 110.
    Writing group for the Alveolar Recruitment for Acute Respiratory Distress Syndrome (ART) investigators, Cavalcanti AB et al (2017) Effect of lung recruitment and titrated positive end-expiratory pressure (PEEP) vs low PEEP on mortality in patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA 318:1335–1345CrossRefGoogle Scholar
  111. 111.
    Vieillard-Baron A, Charron C, Caille V, Belliard G, Page B, Jardin F (2007) Prone position unloads the right ventricle in severe ARDS. Chest 132:1440–1446PubMedCrossRefGoogle Scholar
  112. 112.
    Afshari A, Brok J, Moller AM, Wetterslev J (2010) Inhaled nitric oxide for acute respiratory distress syndrome and acute lung injury in adults and children: a systematic review with meta-analysis and trail sequential analysis. Cochrane Database Syst Rev 7:CD002787Google Scholar
  113. 113.
    George I, Xydas S, Topkara VK, Ferdinando C, Barnwell EC, Gableman L, Sladen RN, Naka Y, Oz MC (2006) Clinical indication for use and outcomes after inhaled nitric oxide therapy. Ann Thorac Surg 82:2161–2169PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature and ESICM 2018

Authors and Affiliations

  • Antoine Vieillard-Baron
    • 1
    • 2
  • R. Naeije
    • 3
  • F. Haddad
    • 4
  • H. J. Bogaard
    • 5
  • T. M. Bull
    • 6
  • N. Fletcher
    • 7
  • T. Lahm
    • 8
  • S. Magder
    • 9
  • S. Orde
    • 10
  • G. Schmidt
    • 11
  • M. R. Pinsky
    • 12
  1. 1.Service de Réanimation, Assistance Publique-Hôpitaux de ParisUniversity Hospital Ambroise ParéBoulogne-BillancourtFrance
  2. 2.INSERM U-1018, CESP, Team 5University of Versailles Saint-Quentin en YvelinesVillejuifFrance
  3. 3.Professor Emeritus at the Université Libre de BruxellesBrusselsBelgium
  4. 4.Division of Cardiovascular MedicineStanford Cardiovascular InstituteStanfordUSA
  5. 5.Department of Pulmonary MedicineVU University Medical CenterAmsterdamThe Netherlands
  6. 6.Division of Pulmonary Sciences and Critical Care MedicineUniversity of Colorado Anschutz Medical CampusAuroraUSA
  7. 7.Department of Cardiothoracic Critical CareSt Georges University Hospital NHS TrustLondonUK
  8. 8.Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of MedicineIndiana University School of Medicine and Richard L. Roudebush VA Medical CenterIndianapolisUSA
  9. 9.Department of Critical CareMcGill University Health CentreMontrealCanada
  10. 10.Intensive Care UnitNepean HospitalSydneyAustralia
  11. 11.Department of Internal Medicine and Critical CareUniversity of IowaIowa CityUSA
  12. 12.Department of Critical Care MedicineUniversity of PittsburghPittsburghUSA

Personalised recommendations