Advertisement

Intensive Care Medicine

, Volume 44, Issue 12, pp 2222–2224 | Cite as

Ten false beliefs in neurocritical care

  • Geert Meyfroidt
  • David Menon
  • Alexis F. Turgeon
What's New in Intensive Care
  1. 1.

    Only neurointensivists should care about the brain.

    In acute brain injury, the need for specific expertise on central nervous pathophysiology is evident. However, even when the primary reason for ICU admission is extracranial, the brain may be affected too, through inadequate substrate and oxygen delivery, blood–brain barrier leak, harmful effects of sedatives, and excitotoxicity. The resulting spectrum of brain dysfunction includes delirium, encephalopathy, coma, and non-convulsive seizures. Therefore, all intensive care should integrate neurointensive care, with the primary goal to preserve the brain [1].

     
  2. 2.

    Clinical examination of neurocritically ill patients is impossible.

    The patient’s clinical state is our most important neuromonitor. Clinical assessment of consciousness, cognition, brainstem, and motor function should be attempted at least upon admission and daily [2]. Sedatives confound neurological examinations, and should be used sparingly in severe brain injuries,...

Notes

Compliance with ethical standards

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    Tasker RC, Menon DK (2016) Critical care and the brain. JAMA 315:749CrossRefPubMedGoogle Scholar
  2. 2.
    Sharshar T, Citerio G, Andrews PJD et al (2014) Neurological examination of critically ill patients: a pragmatic approach. Report of an ESICM expert panel. Intensive Care Med 40:484–495CrossRefPubMedGoogle Scholar
  3. 3.
    Chesnut RM, Temkin N, Carney N et al (2012) A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J Med 367:2471–2481CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Carney N, Totten AM, Oʼ Reilly C et al (2017) Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery 80:6–15PubMedGoogle Scholar
  5. 5.
    Güiza F, Depreitere B, Piper I et al (2015) Visualizing the pressure and time burden of intracranial hypertension in adult and paediatric traumatic brain injury. Intensive Care Med 41:1067–1076CrossRefPubMedGoogle Scholar
  6. 6.
    Cooper JD, Rosenfeld JV, Murray L et al (2011) Decompressive craniectomy in diffuse traumatic brain injury. New Engl J Med 364:1493–1502CrossRefPubMedGoogle Scholar
  7. 7.
    Andrews PJD, Sinclair HL, Rodriguez A et al (2015) Hypothermia for intracranial hypertension after traumatic brain injury. N Engl J Med 373:2403–2412CrossRefPubMedGoogle Scholar
  8. 8.
    Gardner AE, Olson BE, Lichtiger M (1971) Cerebrospinal-fluid pressure during dissociative anesthesia with ketamine. Anesthesiology 35:226–228CrossRefPubMedGoogle Scholar
  9. 9.
    Zeiler FA, Teitelbaum J, West M, Gillman LM (2014) The ketamine effect on ICP in traumatic brain injury. Neurocrit Care 21:163–173CrossRefPubMedGoogle Scholar
  10. 10.
    Zeiler FA, Teitelbaum J, West M, Gillman LM (2014) The ketamine effect on intracranial pressure in nontraumatic neurological illness. J Crit Care 29:1096–1106CrossRefPubMedGoogle Scholar
  11. 11.
    Sakai T, Ichiyama T, Whitten CW et al (2000) Ketamine suppresses endotoxin-induced NF-kappaB expression. Can J Anaesth 47:1019–1024CrossRefPubMedGoogle Scholar
  12. 12.
    Hertle DN, Dreier JP, Woitzik J et al (2012) Effect of analgesics and sedatives on the occurrence of spreading depolarizations accompanying acute brain injury. Brain 135:2390–2398CrossRefPubMedGoogle Scholar
  13. 13.
    Gaspard N, Foreman B, Judd LM et al (2013) Intravenous ketamine for the treatment of refractory status epilepticus: a retrospective multicenter study. Epilepsia 54:1498–1503CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Diringer MN, Bleck TP, Claude Hemphill J et al (2011) Critical care management of patients following aneurysmal subarachnoid hemorrhage: recommendations from the Neurocritical Care Society’s Multidisciplinary Consensus Conference. Neurocrit Care 15:211–240CrossRefPubMedGoogle Scholar
  15. 15.
    Nielsen N, Friberg H, Gluud C et al (2011) Hypothermia after cardiac arrest should be further evaluated—a systematic review of randomised trials with meta-analysis and trial sequential analysis. Int J Cardiol 151:333–341CrossRefPubMedGoogle Scholar
  16. 16.
    Nielsen N, Wetterslev J, Cronberg T et al (2013) Targeted temperature management at 33 °C versus 36 °C after cardiac arrest. N Engl J Med 369:2197–2206CrossRefPubMedGoogle Scholar
  17. 17.
    Nielsen N, Friberg H (2015) Temperature management after cardiac arrest. Curr Opin Crit Care 21:202–208CrossRefPubMedGoogle Scholar
  18. 18.
    Oddo M, Schmidt JM, Carrera E et al (2008) Impact of tight glycemic control on cerebral glucose metabolism after severe brain injury: a microdialysis study. Crit Care Med 36(12):3233–3238CrossRefPubMedGoogle Scholar
  19. 19.
    Borgquist O, Wise MP, Nielsen N et al (2017) Dysglycemia, glycemic variability, and outcome after cardiac arrest and temperature management at 33 °C and 36 °C. Crit Care Med 45:1337–1343CrossRefPubMedGoogle Scholar
  20. 20.
    Hermanides J, Plummer MP, Finnis M et al (2018) Glycaemic control targets after traumatic brain injury: a systematic review and meta-analysis. Crit Care 22:11CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Powers WJ, Rabinstein AA, Ackerson T et al (2018) 2018 guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 49:e46–e110Google Scholar
  22. 22.
    Albers GW, Marks MP, Kemp S et al (2018) Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med 378:708–718CrossRefPubMedGoogle Scholar
  23. 23.
    Campbell BCV, van Zwam WH, Goyal M et al (2018) Effect of general anaesthesia on functional outcome in patients with anterior circulation ischaemic stroke having endovascular thrombectomy versus standard care: a meta-analysis of individual patient data. Lancet Neurol 17:47–53CrossRefPubMedGoogle Scholar
  24. 24.
    Butcher KS, Jeerakathil T, Hill M et al (2013) The intracerebral hemorrhage acutely decreasing arterial pressure trial. Stroke 44:620–626CrossRefPubMedGoogle Scholar
  25. 25.
    Anderson CS, Heeley E, Huang Y et al (2013) Rapid blood-pressure lowering in patients with acute intracerebral hemorrhage. N Engl J Med 368:2355–2365CrossRefPubMedGoogle Scholar
  26. 26.
    Qureshi AI, Palesch YY, Barsan WG et al (2016) Intensive blood-pressure lowering in patients with acute cerebral hemorrhage. N Engl J Med 375:1033–1043CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature and ESICM 2018

Authors and Affiliations

  1. 1.Department of Intensive Care MedicineUniversity Hospitals LeuvenLeuvenBelgium
  2. 2.Faculty of MedicineKU LeuvenLeuvenBelgium
  3. 3.Division of AnaesthesiaUniversity of CambridgeCambridgeUK
  4. 4.Neurosciences Critical Care UnitAddenbrooke’s HospitalCambridgeUK
  5. 5.Queens’ CollegeCambridgeUK
  6. 6.National Institute for Health ResearchCambridgeUK
  7. 7.European Brain Injury ConsortiumCambridgeUK
  8. 8.Division of Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, and CHU de Québec–Université Laval Research CenterUniversité LavalQuébec CityCanada

Personalised recommendations