Advertisement

Intensive Care Medicine

, Volume 44, Issue 1, pp 61–72 | Cite as

Ultrasound-guided or landmark techniques for central venous catheter placement in critically ill children

  • Ignacio Oulego-ErrozEmail author
  • Rafael González-Cortes
  • Patricia García-Soler
  • Mónica Balaguer-Gargallo
  • Manuel Frías-Pérez
  • Juan Mayordomo-Colunga
  • Ana Llorente-de-la-Fuente
  • Paula Santos-Herraiz
  • Juan José Menéndez-Suso
  • María Sánchez-Porras
  • Daniel Palanca-Arias
  • Carmen Clavero-Rubio
  • Mª Soledad Holanda-Peña
  • Luis Renter-Valdovinos
  • Sira Fernández-De-Miguel
  • Antonio Rodríguez-Núñez
  • RECANVA collaborative study
Pediatric Original

Abstract

Purpose

To assess whether ultrasound guidance improves central venous catheter placement outcomes compared to the landmark technique in critically ill children.

Methods

A prospective multicentre observational study was carried out in 26 paediatric intensive care units over 6 months. Children 0–18 years old who received a temporary central venous catheter, inserted using either ultrasound or landmark techniques, were eligible. The primary outcome was the first-attempt success rate. Secondary outcomes included overall placement success, number of puncture attempts, number of procedures requiring multiple punctures (> 3 punctures), number of procedures requiring punctures at more than one vein site and immediate mechanical complications. To account for potential confounding factors, we used propensity scores. Our primary analysis was based on 1:1 propensity score matching. The association between cannulation technique and outcomes in the matched cohort was estimated using generalized estimating equations and mixed-effects models to account for patient-level and hospital-level confounders.

Results

Five hundred central venous catheter-placement procedures involving 354 patients were included. Ultrasound was used for 323 procedures, and the landmark technique was used for 177. Two hundred and sixty-six procedures were matched (133 in the ultrasound group and 133 in the landmark group). Ultrasound was associated with an increase in the first-attempt success rate [46.6 vs. 30%, odds ratio 2.09 (1.26–3.46); p < 0.001], a reduced number of puncture attempts [2 (1–3) vs. 2 (1–4), B coefficient − 0.51 (95% confidence interval − 1.01 to − 0.03), p = 0.035], and fewer overall mechanical complications [12 vs. 22.5%, odds ratio 0.47 (95% confidence interval 0.24–0.91), p = 0.025] in the matched cohort. The number of puncture attempts was the main factor associated with overall complications.

Conclusions

Compared with the landmark technique, ultrasound guidance was associated with an increased first-attempt success rate, a reduced number of puncture attempts, and fewer complications during central venous catheter placement in critically ill children.

Keywords

Ultrasound Landmark Central venous catheterization Paediatric intensive care unit Children 

Notes

Acknowledgements

The authors wish to thank all the collaborators for their participation in the RECANVA study.

RECANVA collaborative study. Other members of the RECANVA collaborative study are: Manuel Ortiz-Pallares. Paediatric Intensive Care Unit. Hospital Universitario Alvaro Cunqueiro. Estrada Clara Campoamor, 341, 36212 Vigo. (Spain)a, Emilia Fernández-Romero. Paediatric Intensive Care Unit. Hospital Universitario Virgen de la Macarena. Avenida Doctor Fedriani, 3, 41009 Sevilla (Spain)a, Soledad Torrús-Carmona. Paediatric and Neonatal Intensive Care Unit. Complejo Hospitalario de Navarra. Calle de Irunlarrea, 3, 31008 Pamplona (Spain)a, Alicia Mirás-Veiga. Paediatric Intensive Care Unit. Hospital Universitario de Burgos. Avda. Islas Baleares, 3, 09006 Burgos (Spain)a,b, María García-Barba. Paediatric Intensive Care Unit. Hospital Universitario Monte Príncipe. Av. de Montepríncipe, 25, 28660 Boadilla del Monte. (Spain)a, Esther Jimenez. Paediatric Intensive Care Unit. Hospital Universitari de Girona Doctor Josep Trueta. Avinguda de França, S/N, 17007 Girona. (Spain)a, María Pino-Velázquez. Paediatric Intensive Care Unit. Hospital Clínico Universitario de Valladolid. Av. Ramón y Cajal, 3, 47003 Valladolid (Spain)a, Virginia González-Ojeda. Paediatric Intensive Care Unit. Hospital Universitario Quirón-Salud. Calle Diego de Velázquez, 1, 28223 Pozuelo de Alarcón, (Spain)a, Amalia Martínez-Antón. Paediatric Intensive Care Unit. Hospital Universitario Fundación Jiménez Díaz. Av. Reyes Católicos, 2, 28040 Madrid (Spain)a, Carolina González-Miño. Paediatric Intensive Care Unit. Hospital General de Castellón. Avinguda de Benicàssim, s/n, 12004 Castelló de la Plana, (Spain)a.

aRECANVA collaborative study.

bWorking Group on Bedside Ultrasound of the Spanish Society of Pediatric Intensive Care.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Supplementary material

134_2017_4985_MOESM1_ESM.docx (553 kb)
Supplementary material 1 (DOCX 552 kb)
134_2017_4985_MOESM2_ESM.docx (15 kb)
Supplementary material 2 (DOCX 15 kb)

References

  1. 1.
    Bouaziz H, Zetlaoui PJ, Pierre S, Desruennes E, Fritsch N, Jochum D et al (2005) Guidelines on the use of ultrasound guidance for vascular access. Anaesth Crit Care Pain Med 34:65–69.  https://doi.org/10.1016/j.accpm.2015.01.004 CrossRefGoogle Scholar
  2. 2.
    Troianos CA, Hartman GS, Glas KE, Skubas NJ, Eberhardt RT, Walker JD et al (2011) Guidelines for performing ultrasound guided vascular cannulation: recommendations of the American Society of Echocardiography and the Society of Cardiovascular Anesthesiologists. J Am Soc Echocardiogr 24:1291–1318.  https://doi.org/10.1016/j.echo.2011.09.021 CrossRefPubMedGoogle Scholar
  3. 3.
    Bodenham Chair A, Babu S, Bennett J, Binks R, Fee P, Fox B et al (2016) Association of anaesthetists of Great Britain and Ireland: safe vascular access 2016. Anaesthesia 71:573–585.  https://doi.org/10.1111/anae.13360 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Lamperti M, Bodenham AR, Pittiruti M, Blaivas M, Augoustides JG, Elbarbary M et al (2012) International evidence-based recommendations on ultrasound-guided vascular access. Intensive Care Med 38:1105–1117.  https://doi.org/10.1007/s00134-012-2597-x CrossRefPubMedGoogle Scholar
  5. 5.
    Shime N, Hosokawa K, MacLaren G (2015) Ultrasound imaging reduces failure rates of percutaneous central venous catheterization in children. Pediatr Crit Care Med 16:718–725.  https://doi.org/10.1097/PCC.0000000000000470 CrossRefPubMedGoogle Scholar
  6. 6.
    Sigaut S, Skhiri A, Stany I, Golmar J, Nivoche Y, Constant I et al (2009) Ultrasound guided internal jugular vein access in children and infant: a meta-analysis of published studies. Paediatr Anaesth 19:1199–1206.  https://doi.org/10.1111/j.1460-9592.2009.03171.x CrossRefPubMedGoogle Scholar
  7. 7.
    Gayat E, Pirracchio R, Resche-Rigon M, Mebazaa A, Mary J-Y, Porcher R (2010) Propensity scores in intensive care and anaesthesiology literature: a systematic review. Intensive Care Med 36:1993–2003.  https://doi.org/10.1007/s00134-010-1991-5 CrossRefPubMedGoogle Scholar
  8. 8.
    Austin PC (2009) Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. Stat Med 28:3083–3107.  https://doi.org/10.1002/sim.3697 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Austin PC, Stuart EA (2015) Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies. Stat Med 34:3661–3679.  https://doi.org/10.1002/sim.6607 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Nguyen T-L, Collins GS, Spence J, Daurès J-P, Devereaux PJ, Landais P et al (2017) Double-adjustment in propensity score matching analysis: choosing a threshold for considering residual imbalance. BMC Med Res Methodol 17:78.  https://doi.org/10.1186/s12874-017-0338-0 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lunceford JK, Davidian M (2004) Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study. Stat Med 23:2937–2960.  https://doi.org/10.1002/sim.1903 CrossRefPubMedGoogle Scholar
  12. 12.
    Lambert RL, Boker JR, Maffei FA (2011) National survey of bedside ultrasound use in pediatric critical care. Pediatr Crit Care Med 12:655–659.  https://doi.org/10.1097/PCC.0b013e3182266a51 CrossRefPubMedGoogle Scholar
  13. 13.
    Nguyen J, Amirnovin R, Ramanathan R, Noori S (2016) The state of point-of-care ultrasonography use and training in neonatal-perinatal medicine and pediatric critical care medicine fellowship programs. J Perinatol 36:972–976.  https://doi.org/10.1038/jp.2016.126 CrossRefPubMedGoogle Scholar
  14. 14.
    Lamperti M, Caldiroli D, Cortellazzi P, Vailati D, Pedicelli A, Tosi F et al (2008) Safety and efficacy of ultrasound assistance during internal jugular vein cannulation in neurosurgical infants. Intensive Care Med 34:2100–2105.  https://doi.org/10.1007/s00134-008-1210-9 CrossRefPubMedGoogle Scholar
  15. 15.
    Froehlich CD, Rigby MR, Rosenberg ES, Li R, Roerig P-LJ, Easley KA et al (2009) Ultrasound-guided central venous catheter placement decreases complications and decreases placement attempts compared with the landmark technique in patients in a pediatric intensive care unit. Crit Care Med 37:1090–1096.  https://doi.org/10.1097/CCM.0b013e31819b570e CrossRefPubMedGoogle Scholar
  16. 16.
    Yang EJ, Ha HS, Kong YH, Kim SJ (2015) Ultrasound-guided internal jugular vein catheterization in critically ill pediatric patients. Korean J Pediatr 58:136–141.  https://doi.org/10.3345/kjp.2015.58.4.136 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Alten JA, Borasino S, Gurley WQ, Law MA, Toms R, Dabal RJ (2012) Ultrasound-guided femoral vein catheterization in neonates with cardiac disease. Pediatr Crit Care Med 13:654–659.  https://doi.org/10.1097/PCC.0b013e318250af0c CrossRefPubMedGoogle Scholar
  18. 18.
    Rey C, Alvarez F, De La Rua V, Medina A, Concha A, Díaz JJ et al (2009) Mechanical complications during central venous cannulations in pediatric patients. Intensive Care Med 35:1438–1443.  https://doi.org/10.1007/s00134-009-1534-0 CrossRefPubMedGoogle Scholar
  19. 19.
    Calvache J-A, Rodríguez M-V, Trochez A, Klimek M, Stolker R-J, Lesaffre E (2016) Incidence of mechanical complications of central venous catheterization using landmark technique: do not try more than 3 times. J Intensive Care Med 31:397–402.  https://doi.org/10.1177/0885066614541407 CrossRefPubMedGoogle Scholar
  20. 20.
    Menéndez JJ, Verdú C, Calderón B, Gómez-Zamora A, Schüffelmann C, de la Cruz JJ et al (2016) Incidence and risk factors of superficial and deep vein thrombosis associated with peripherally inserted central catheters in children. J Thromb Haemost 14:2158–2168.  https://doi.org/10.1111/jth.13478 CrossRefPubMedGoogle Scholar
  21. 21.
    Lee AYY, Levine MN, Butler G, Webb C, Costantini L, Gu C et al (2006) Incidence, risk factors, and outcomes of catheter-related thrombosis in adult patients with cancer. J Clin Oncol 24:1404–1408.  https://doi.org/10.1200/JCO.2005.03.5600 CrossRefPubMedGoogle Scholar
  22. 22.
    Rando K, Castelli J, Pratt JP, Scavino M, Rey G, Rocca ME et al (2014) Ultrasound-guided internal jugular vein catheterization: a randomized controlled trial. Heart Lung Vessel 6:13–23PubMedPubMedCentralGoogle Scholar
  23. 23.
    Airapetian N, Maizel J, Langelle F, Modeliar SS, Karakitsos D, Dupont H et al (2013) Ultrasound-guided central venous cannulation is superior to quick-look ultrasound and landmark methods among inexperienced operators: a prospective randomized study. Intensive Care Med 39:1938–1944.  https://doi.org/10.1007/s00134-013-3072-z CrossRefPubMedGoogle Scholar
  24. 24.
    Maizel J, Guyomarc’h L, Henon P, Modeliar SS, de Cagny B, Choukroun G et al (2014) Residents learning ultrasound-guided catheterization are not sufficiently skilled to use landmarks. Crit Care 23(18):R36.  https://doi.org/10.1186/cc13741 CrossRefGoogle Scholar
  25. 25.
    Brass P, Hellmich M, Kolodziej L, Schick G, Smith AF (2015) Ultrasound guidance versus anatomical landmarks for subclavian or femoral vein catheterization. Cochrane Database Syst Rev 9(1):CD011447.  https://doi.org/10.1002/14651858.CD011447 Google Scholar
  26. 26.
    Iwashima S, Ishikawa T, Ohzeki T (2008) Ultrasound-guided versus landmark-guided femoral vein access in pediatric cardiac catheterization. Pediatr Cardiol 29:339–342.  https://doi.org/10.1007/s00246-007-9066-2 CrossRefPubMedGoogle Scholar
  27. 27.
    Tailounie M, Mcadams LA, Frost KC, Gossett J, Green J, Bhutta AT et al (2012) Dimension and overlap of femoral and neck blood vessels in neonates. Pediatr Crit Care 13:312–317.  https://doi.org/10.1097/PCC.0b013e3182257a4c CrossRefGoogle Scholar
  28. 28.
    Bhatia N, Sivaprakasam J, Allford M, Guruswamy V (2014) The relative position of femoral artery and vein in children under general anesthesia—an ultrasound-guided observational study. Paediatr Anaesth 24:1164–1168.  https://doi.org/10.1111/pan.12486 CrossRefPubMedGoogle Scholar
  29. 29.
    Souza Neto E P, Grousson S, Duflo F, Tahon F, Mottolese C, Dailler v (2014) Ultrasonographic anatomic variations of the major veins in paediatric patients. Br J Anaesth 112:879–884.  https://doi.org/10.1093/bja/aet482 CrossRefGoogle Scholar
  30. 30.
    Saugel B, Scheeren TWL, Teboul JL (2017) Ultrasound-guided central venous catheter placement: a structured review and recommendations for clinical practice. Crit Care 28:225.  https://doi.org/10.1186/s13054-017-1814-y CrossRefGoogle Scholar
  31. 31.
    González Cortés R, Renter Valdovinos L, Coca Pérez A, Vázquez Martínez JL (2017) Point-of-care ultrasound in Spanish paediatric intensive care units. An Pediatr (Barc) 86:344–349.  https://doi.org/10.1016/j.anpedi.2016.06.009 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature and ESICM 2017

Authors and Affiliations

  • Ignacio Oulego-Erroz
    • 1
    Email author
  • Rafael González-Cortes
    • 2
  • Patricia García-Soler
    • 3
  • Mónica Balaguer-Gargallo
    • 4
  • Manuel Frías-Pérez
    • 5
  • Juan Mayordomo-Colunga
    • 6
  • Ana Llorente-de-la-Fuente
    • 7
  • Paula Santos-Herraiz
    • 8
  • Juan José Menéndez-Suso
    • 9
  • María Sánchez-Porras
    • 10
  • Daniel Palanca-Arias
    • 11
  • Carmen Clavero-Rubio
    • 12
  • Mª Soledad Holanda-Peña
    • 13
  • Luis Renter-Valdovinos
    • 14
  • Sira Fernández-De-Miguel
    • 15
  • Antonio Rodríguez-Núñez
    • 16
  • RECANVA collaborative study
  1. 1.Paediatric Intensive Care UnitComplejo Asistencial Universitario de LeónLeónSpain
  2. 2.Paediatric Intensive Care UnitHospital Materno-Infantil Universitario Gregorio MarañónMadridSpain
  3. 3.Paediatric Intensive Care UnitHospital Universitario Carlos Haya de MálagaMálagaSpain
  4. 4.Paediatric Intensive Care UnitHospital Sant Joan de DèuEsplugues de LlobregatSpain
  5. 5.Paediatric Intensive Care UnitHospital Reina Sofía de CórdobaCórdobaSpain
  6. 6.Paediatric Intensive Care UnitHospital Universitario Central de AsturiasOviedoSpain
  7. 7.Paediatric Intensive Care UnitHospital Universitario 12 de OctubreMadridSpain
  8. 8.Paediatric Intensive Care UnitHospital Virgen de la Salud, Complejo Hospitalario de ToledoToledoSpain
  9. 9.Paediatric Intensive Care UnitHospital de La PazMadridSpain
  10. 10.Paediatric Intensive Care UnitHospital Universitario Ramón y Cajal. CtraMadridSpain
  11. 11.Paediatric Intensive Care UnitHospital Universitario Miguel ServetSaragossaSpain
  12. 12.Paediatric Intensive Care UnitHospital Universitario Son EspasesPalmaSpain
  13. 13.Paediatric Intensive Care UnitHospital Universitario Marqués de ValdecillaSantanderSpain
  14. 14.Paediatric Intensive Care UnitParc Taulí Hospital UniversitariSabadellSpain
  15. 15.Paediatric Intensive Care UnitHospital Universitario de SalamancaSalamancaSpain
  16. 16.Paediatric and Emergency Care DepartmentComplejo Hospitalario Universitario de Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations