Intensive Care Medicine

, Volume 43, Issue 9, pp 1340–1351 | Cite as

The research agenda for trauma critical care

  • Karim AsehnouneEmail author
  • Zsolt Balogh
  • Giuseppe Citerio
  • Andre Cap
  • Timothy Billiar
  • Nino Stocchetti
  • Mitchell J. Cohen
  • Paolo Pelosi
  • Nicola Curry
  • Christine Gaarder
  • Russell Gruen
  • John Holcomb
  • Beverley J. Hunt
  • Nicole P. Juffermans
  • Mark Maegele
  • Mark Midwinter
  • Frederick A. Moore
  • Michael O’Dwyer
  • Jean-François Pittet
  • Herbert Schöchl
  • Martin Schreiber
  • Philip C. Spinella
  • Simon Stanworth
  • Robert Winfield
  • Karim Brohi
Research Agenda


In this research agenda on the acute and critical care management of trauma patients, we concentrate on the major factors leading to death, namely haemorrhage and traumatic brain injury (TBI). In haemostasis biology, the results of randomised controlled trials have led to the therapeutic focus moving away from the augmentation of coagulation factors (such as recombinant factor VIIa) and towards fibrinogen supplementation and administration of antifibrinolytics such as tranexamic acid. Novel diagnostic techniques need to be evaluated to determine whether an individualised precision approach is superior to current empirical practice. The timing and efficacy of platelet transfusions remain in question, while new blood products need to be developed and evaluated, including whole blood variants, lyophilised products and novel red cell storage modalities. The current cornerstones of TBI management are intracranial pressure control, maintenance of cerebral perfusion pressure and avoidance of secondary insults (such as hypotension, hypoxaemia, hyperglycaemia and pyrexia). Therapeutic hypothermia and decompressive craniectomy are controversial therapies. Further research into these strategies should focus on identifying which subgroups of patients may benefit from these interventions. Prediction of the long-term outcome early after TBI remains challenging. Early magnetic resonance imaging has recently been evaluated for predicting the long-term outcome in mild and severe TBI. Novel biomarkers may also help in outcome prediction and may predict chronic neurological symptoms. For trauma in general, rehabilitation is complex and multidimensional, and the optimal timing for commencement of rehabilitation needs investigation. We propose priority areas for clinical trials in the next 10 years.


Haemorrhage Trauma Shock Traumatic brain injury Coagulopathy Intracranial hypertension 



The authors gratefully acknowledge Jules Cales for preparing figures and tables.

Supplementary material

134_2017_4895_MOESM1_ESM.docx (38 kb)
Supplementary material 1 (DOCX 38 kb)


  1. 1.
    Oyeniyi BT, Fox EE, Scerbo M et al (2017) Trends in 1029 trauma deaths at a level 1 trauma center: impact of a bleeding control bundle of care. Injury 48:5–12. doi: 10.1016/j.injury.2016.10.037 CrossRefPubMedGoogle Scholar
  2. 2.
    Moore L, Turgeon AF, Lauzier F et al (2015) Evolution of patient outcomes over 14 years in a mature, inclusive Canadian trauma system. World J Surg 39:1397–1405. doi: 10.1007/s00268-015-2977-9 CrossRefPubMedGoogle Scholar
  3. 3.
    National Institute for Clinical Excellence (NICE) Major trauma assessment and initial management guidelines (2016) Accessed 20 Jan 2017
  4. 4.
    Rossaint R, Bouillon B, Cerny V et al (2016) The European guideline on management of major bleeding and coagulopathy following trauma: fourth edition. Crit Care 20:100. doi: 10.1186/s13054-016-1265-x CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Hunt BJ, Allard S, Keeling D et al (2015) A practical guideline for the haematological management of major haemorrhage. Br J Haematol 170:788–803. doi: 10.1111/bjh.13580 CrossRefPubMedGoogle Scholar
  6. 6.
    Harmsen AMK, Giannakopoulos GF, Moerbeek PR et al (2015) The influence of prehospital time on trauma patients outcome: a systematic review. Injury 46:602–609. doi: 10.1016/j.injury.2015.01.008 CrossRefPubMedGoogle Scholar
  7. 7.
    Stanworth SJ, Davenport R, Curry N et al (2016) Mortality from trauma haemorrhage and opportunities for improvement in transfusion practice. Br J Surg 103:357–365. doi: 10.1002/bjs.10052 CrossRefPubMedGoogle Scholar
  8. 8.
    Holcomb JB, Wade CE, Michalek JE et al (2008) Increased plasma and platelet to red blood cell ratios improves outcome in 466 massively transfused civilian trauma patients. Ann Surg 248:447–458. doi: 10.1097/SLA.0b013e318185a9ad PubMedGoogle Scholar
  9. 9.
    van Oostendorp SE, Tan ECTH, Geeraedts LMG (2016) Prehospital control of life-threatening truncal and junctional haemorrhage is the ultimate challenge in optimizing trauma care; a review of treatment options and their applicability in the civilian trauma setting. Scand J Trauma Resusc Emerg Med 24:110. doi: 10.1186/s13049-016-0301-9 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Brinck T, Handolin L, Lefering R (2016) The effect of evolving fluid resuscitation on the outcome of severely injured patients: an 8-year experience at a tertiary trauma center. Scand J Surg 105:109–116. doi: 10.1177/1457496915586650 CrossRefPubMedGoogle Scholar
  11. 11.
    Giancarelli A, Birrer KL, Alban RF et al (2016) Hypocalcemia in trauma patients receiving massive transfusion. J Surg Res 202:182–187. doi: 10.1016/j.jss.2015.12.036 CrossRefPubMedGoogle Scholar
  12. 12.
    Balvers K, Coppens M, van Dieren S et al (2015) Effects of a hospital-wide introduction of a massive transfusion protocol on blood product ratio and blood product waste. J Emerg Trauma Shock 8:199–204. doi: 10.4103/0974-2700.166597 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Khan S, Allard S, Weaver A et al (2013) A major haemorrhage protocol improves the delivery of blood component therapy and reduces waste in trauma massive transfusion. Injury 44:587–592. doi: 10.1016/j.injury.2012.09.029 CrossRefPubMedGoogle Scholar
  14. 14.
    Hess JR, Brohi K, Dutton RP et al (2008) The coagulopathy of trauma: a review of mechanisms. J Trauma 65:748–754. doi: 10.1097/TA.0b013e3181877a9c CrossRefPubMedGoogle Scholar
  15. 15.
    Khan S, Brohi K, Chana M et al (2014) Hemostatic resuscitation is neither hemostatic nor resuscitative in trauma hemorrhage. J Trauma Acute Care Surg 76:561–567. doi: 10.1097/TA.0000000000000146 (discussion 567–8)CrossRefPubMedGoogle Scholar
  16. 16.
    Lamb CM, MacGoey P, Navarro AP, Brooks AJ (2014) Damage control surgery in the era of damage control resuscitation. Br J Anaesth 113:242–249. doi: 10.1093/bja/aeu233 CrossRefPubMedGoogle Scholar
  17. 17.
    Matsumoto J, Lohman BD, Morimoto K et al (2015) Damage control interventional radiology (DCIR) in prompt and rapid endovascular strategies in trauma occasions (PRESTO): a new paradigm. Diagn Interv Imaging 96:687–691. doi: 10.1016/j.diii.2015.06.001 CrossRefPubMedGoogle Scholar
  18. 18.
    Dewar DC, Tarrant SM, King KL, Balogh ZJ (2013) Changes in the epidemiology and prediction of multiple-organ failure after injury. J Trauma Acute Care Surg 74:774–779. doi: 10.1097/TA.0b013e31827a6e69 CrossRefPubMedGoogle Scholar
  19. 19.
    Sauaia A, Moore FA, Moore EE (2017) Postinjury Inflammation and organ dysfunction. Crit Care Clin 33:167–191. doi: 10.1016/j.ccc.2016.08.006 CrossRefPubMedGoogle Scholar
  20. 20.
    Carney N, Totten AM, OʼReilly C et al (2016) Guidelines for the management of severe traumatic brain injury, 4th edn. Neurosurgery 80(1):6–15. doi: 10.1227/NEU.0000000000001432
  21. 21.
    Cnossen MC, Scholten AC, Lingsma HF et al (2016) Adherence to guidelines in adult patients with traumatic brain injury: a living systematic review. J Neurotrauma. doi: 10.1089/neu.2015.4121
  22. 22.
    Le Roux P, Menon DK, Citerio G et al (2014) Consensus summary statement of the International Multidisciplinary Consensus Conference on Multimodality Monitoring in Neurocritical Care: a statement for healthcare professionals from the Neurocritical Care Society and the European Society of Intensive Care Medicine. Intensive Care Med 40:1189–1209Google Scholar
  23. 23.
    Maas AIR, Murray GD, Roozenbeek B et al (2013) Advancing care for traumatic brain injury: findings from the IMPACT studies and perspectives on future research. Lancet Neurol 12:1200–1210. doi: 10.1016/S1474-4422(13)70234-5 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hutchinson PJ, Kolias AG, Timofeev IS et al (2016) Trial of decompressive craniectomy for traumatic intracranial hypertension. N Engl J Med 375:1119–1130. doi: 10.1056/NEJMoa1605215 CrossRefPubMedGoogle Scholar
  25. 25.
    Hughes NT, Burd RS, Teach SJ (2014) Damage control resuscitation: permissive hypotension and massive transfusion protocols. Pediatr Emerg Care 30:651–656. doi: 10.1097/PEC.0000000000000217 (quiz 657–8)CrossRefPubMedGoogle Scholar
  26. 26.
    Rourke C, Curry N, Khan S et al (2012) Fibrinogen levels during trauma hemorrhage, response to replacement therapy, and association with patient outcomes. J Thromb Haemost 10:1342–1351. doi: 10.1111/j.1538-7836.2012.04752.x CrossRefPubMedGoogle Scholar
  27. 27.
    Innerhofer P, Fries D, Mittermayr M et al (2017) Reversal of trauma-induced coagulopathy using first-line coagulation factor concentrates or fresh frozen plasma (RETIC): a single-centre, parallel-group, open-label, randomised trial. Lancet Haematol 4:e258–e271. doi: 10.1016/S2352-3026(17)30077-7 CrossRefPubMedGoogle Scholar
  28. 28.
    Holcomb JB, Minei KM, Scerbo ML et al (2012) Admission rapid thrombelastography can replace conventional coagulation tests in the emergency department: experience with 1974 consecutive trauma patients. Ann Surg 256:476–486. doi: 10.1097/SLA.0b013e3182658180 CrossRefPubMedGoogle Scholar
  29. 29.
    Winearls J, Reade M, Miles H et al (2016) Targeted coagulation management in severe trauma: the controversies and the evidence. Anesth Analg 123:910–924. doi: 10.1213/ANE.0000000000001516 CrossRefPubMedGoogle Scholar
  30. 30.
    Brohi K, Cohen MJ, Ganter MT et al (2008) Acute coagulopathy of trauma: hypoperfusion induces systemic anticoagulation and hyperfibrinolysis. J Trauma 64:1211–1217. doi: 10.1097/TA.0b013e318169cd3c (discussion 1217)CrossRefPubMedGoogle Scholar
  31. 31.
    Hauser CJ, Boffard K, Dutton R et al (2010) Results of the CONTROL trial: efficacy and safety of recombinant activated factor VII in the management of refractory traumatic hemorrhage. J Trauma 69:489–500. doi: 10.1097/TA.0b013e3181edf36e CrossRefPubMedGoogle Scholar
  32. 32.
    Curry N, Rourke C, Davenport R et al (2015) Early cryoprecipitate for major haemorrhage in trauma: a randomised controlled feasibility trial. Br J Anaesth 115:76–83. doi: 10.1093/bja/aev134 CrossRefPubMedGoogle Scholar
  33. 33.
    Shakur H, Roberts I, CRASH-2 trial collaborators et al (2010) Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet 376:23–32. doi: 10.1016/S0140-6736(10)60835-5 CrossRefPubMedGoogle Scholar
  34. 34.
    Holcomb JB, Tilley BC, Baraniuk S et al (2015) Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial. JAMA 313:471–482. doi: 10.1001/jama.2015.12 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Gonzalez E, Moore EE, Moore HB et al (2016) Goal-directed hemostatic resuscitation of trauma-induced coagulopathy: a pragmatic randomized clinical trial comparing a viscoelastic assay to conventional coagulation assays. Ann Surg 263:1051–1059. doi: 10.1097/SLA.0000000000001608 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Moore EE, Moore HB, Gonzalez E et al (2016) Rationale for the selective administration of tranexamic acid to inhibit fibrinolysis in the severely injured patient. Transfusion 56(Suppl 2):S110–S114. doi: 10.1111/trf.13486 CrossRefPubMedGoogle Scholar
  37. 37.
    Simmons JW, Powell MF (2016) Acute traumatic coagulopathy: pathophysiology and resuscitation. Br J Anaesth 117:iii31–iii43. doi: 10.1093/bja/aew328 CrossRefPubMedGoogle Scholar
  38. 38.
    Güiza F, Depreitere B, Piper I et al (2015) Visualizing the pressure and time burden of intracranial hypertension in adult and paediatric traumatic brain injury. Intensive Care Med 41:1067–1076. doi: 10.1007/s00134-015-3806-1 CrossRefPubMedGoogle Scholar
  39. 39.
    Makarenko S, Griesdale DE, Gooderham P, Sekhon MS (2016) Multimodal neuromonitoring for traumatic brain injury: a shift towards individualized therapy. J Clin Neurosci 26:8–13. doi: 10.1016/j.jocn.2015.05.065 CrossRefPubMedGoogle Scholar
  40. 40.
    Chesnut RM, Temkin N, Carney N et al (2012) A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J Med 367:2471–2481. doi: 10.1056/NEJMoa1207363 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Chesnut RM, Bleck TP, Citerio G et al (2015) A consensus-based interpretation of the benchmark evidence from South American trials: treatment of intracranial pressure trial. J Neurotrauma 32:1722–1724. doi: 10.1089/neu.2015.3976 CrossRefPubMedGoogle Scholar
  42. 42.
    Andrews PJD, Sinclair HL, Rodriguez A et al (2015) Hypothermia for intracranial hypertension after traumatic brain injury. N Engl J Med 373:2403–2412. doi: 10.1056/NEJMoa1507581 CrossRefPubMedGoogle Scholar
  43. 43.
    Cooper DJ, Rosenfeld JV, Murray L et al (2011) Decompressive craniectomy in diffuse traumatic brain injury. N Engl J Med 364:1493–1502. doi: 10.1056/NEJMoa1102077 CrossRefPubMedGoogle Scholar
  44. 44.
    Skolnick BE, Maas AI, Narayan RK et al (2014) A clinical trial of progesterone for severe traumatic brain injury. N Engl J Med 371:2467–2476. doi: 10.1056/NEJMoa1411090 CrossRefPubMedGoogle Scholar
  45. 45.
    Nichol A, French C, Little L et al (2015) Erythropoietin in traumatic brain injury (EPO-TBI): a double-blind randomised controlled trial. Lancet 386:2499–2506. doi: 10.1016/S0140-6736(15)00386-4 CrossRefPubMedGoogle Scholar
  46. 46.
    Stocchetti N, Zanier ER (2016) Chronic impact of traumatic brain injury on outcome and quality of life: a narrative review. Crit Care 20:148. doi: 10.1186/s13054-016-1318-1 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Roquilly A, Feuillet F, Seguin P et al (2016) Empiric antimicrobial therapy for ventilator-associated pneumonia after brain injury. Eur Respir J 47:1219–1228. doi: 10.1183/13993003.01314-2015 CrossRefPubMedGoogle Scholar
  48. 48.
    Roquilly A, Cinotti R, Jaber S et al (2013) Implementation of an evidence-based extubation readiness bundle in 499 brain-injured patients. a before-after evaluation of a quality improvement project. Am J Respir Crit Care Med 188:958–966. doi: 10.1164/rccm.201301-0116OC CrossRefPubMedGoogle Scholar
  49. 49.
    Asehnoune K, Mrozek S, Perrigault P-F et al (2017) A multi-faceted strategy to reduce ventilation-associated mortality in brain-injured patients. The BI-VILI project: a nationwide quality improvement project. Intensive Care Med 287:345. doi: 10.1007/s00134-017-4764-6 Google Scholar
  50. 50.
    Asehnoune K, Seguin P, Lasocki S et al (2017) Extubation success prediction in a multicentric cohort of patients with severe brain injury. Anesthesiology. doi: 10.1097/ALN.0000000000001725 PubMedGoogle Scholar
  51. 51.
    Roquilly A, Mahe PJ, Seguin P et al (2011) Hydrocortisone therapy for patients with multiple trauma: the randomized controlled HYPOLYTE study. JAMA 305:1201–1209. doi: 10.1001/jama.2011.360 CrossRefPubMedGoogle Scholar
  52. 52.
    Asehnoune K, Seguin P, Allary J et al (2014) Hydrocortisone and fludrocortisone for prevention of hospital-acquired pneumonia in patients with severe traumatic brain injury (Corti-TC): a double-blind, multicentre phase 3, randomised placebo-controlled trial. Lancet Respir Med. doi: 10.1016/S2213-2600(14)70144-4 PubMedGoogle Scholar
  53. 53.
    Roberts I, Yates D, Sandercock P et al (2004) Effect of intravenous corticosteroids on death within 14 days in 10008 adults with clinically significant head injury (MRC CRASH trial): randomised placebo-controlled trial. Lancet 364:1321–1328. doi: 10.1016/S0140-6736(04)17188-2 CrossRefGoogle Scholar
  54. 54.
    Galanaud D, Perlbarg V, Gupta R et al (2012) Assessment of white matter injury and outcome in severe brain trauma: a prospective multicenter cohort. Anesthesiology 117:1300–1310. doi: 10.1097/ALN.0b013e3182755558 CrossRefPubMedGoogle Scholar
  55. 55.
    Haghbayan H, Boutin A, Laflamme M et al (2016) The prognostic value of magnetic resonance imaging in moderate and severe traumatic brain injury: a systematic review and meta-analysis protocol. Syst Rev 5:10. doi: 10.1186/s13643-016-0184-x CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Olivera A, Lejbman N, Jeromin A et al (2015) Peripheral total tau in military personnel who sustain traumatic brain injuries during deployment. JAMA Neurol 72:1109–1116. doi: 10.1001/jamaneurol.2015.1383 CrossRefPubMedGoogle Scholar
  57. 57.
    Stocchetti N, Zanier ER (2016) Chronic impact of traumatic brain injury on outcome and quality of life: a narrative review. Crit Care 20:148. doi: 10.1186/s13054-016-1318-1 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Moreno-López L, Sahakian BJ, Manktelow A et al (2016) Depression following traumatic brain injury: a functional connectivity perspective. Brain Inj 30:1319–1328. doi: 10.1080/02699052.2016.1186839 CrossRefPubMedGoogle Scholar
  59. 59.
    Johnson VE, Stewart JE, Begbie FD et al (2013) Inflammation and white matter degeneration persist for years after a single traumatic brain injury. Brain 136:28–42. doi: 10.1093/brain/aws322 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Patel MB, McKenna JW, Alvarez JM et al (2012) Decreasing adrenergic or sympathetic hyperactivity after severe traumatic brain injury using propranolol and clonidine (DASH After TBI Study): study protocol for a randomized controlled trial. Trials 13:1. doi: 10.1186/1745-6215-13-177 CrossRefGoogle Scholar
  61. 61.
    Kroes MCW, Strange BA, Dolan RJ (2010) Beta-adrenergic blockade during memory retrieval in humans evokes a sustained reduction of declarative emotional memory enhancement. J Neurosci 30:3959–3963. doi: 10.1523/JNEUROSCI.5469-09.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    The International Trauma Research Network (INTRN). Accessed 20 Jan 2017
  63. 63.
    The Resuscitation Outcomes Consortium. Accessed 20 Jan 2017

Copyright information

© Springer-Verlag GmbH Germany and ESICM 2017

Authors and Affiliations

  • Karim Asehnoune
    • 1
    • 2
    Email author
  • Zsolt Balogh
    • 7
  • Giuseppe Citerio
    • 3
    • 4
  • Andre Cap
    • 9
  • Timothy Billiar
    • 8
  • Nino Stocchetti
    • 5
  • Mitchell J. Cohen
    • 10
  • Paolo Pelosi
    • 6
  • Nicola Curry
    • 11
  • Christine Gaarder
    • 12
  • Russell Gruen
    • 13
  • John Holcomb
    • 14
  • Beverley J. Hunt
    • 15
  • Nicole P. Juffermans
    • 16
  • Mark Maegele
    • 17
  • Mark Midwinter
    • 18
  • Frederick A. Moore
    • 19
  • Michael O’Dwyer
    • 20
  • Jean-François Pittet
    • 21
  • Herbert Schöchl
    • 22
  • Martin Schreiber
    • 23
  • Philip C. Spinella
    • 24
  • Simon Stanworth
    • 25
  • Robert Winfield
    • 26
  • Karim Brohi
    • 20
  1. 1.Department of Anesthesiology and Critical Care MedicineHôtel Dieu, Centre hospitalier universitaire (CHU) de NantesNantesFrance
  2. 2.Laboratory EA 3826University of NantesNantesFrance
  3. 3.School of Medicine and SurgeryUniversity of Milan-BicoccaMonzaItaly
  4. 4.Neurointensive Care Unit, Department of Emergency and Intensive CareSan Gerardo Hospital, ASST-MonzaMonzaItaly
  5. 5.Department of Physiopathology and TransplantMilan University and Neuro ICU Fondazione IRCCS Cà Granda Ospedale Maggiore PoliclinicoMilanItaly
  6. 6.Department of Surgical Sciences and Integrated Diagnostics, IRCCS AOU San Martino-ISTUniversity of GenoaGenoaItaly
  7. 7.John Hunter Hospital and University of NewcastleNewcastleAustralia
  8. 8.Department of SurgeryUniversity of PittsburghPittsburghUSA
  9. 9.US Army Institute of Surgical ResearchSan AntonioUSA
  10. 10.University of Colorado School of MedicineDenver Health Medical CenterAuroraUSA
  11. 11.Oxford University Hospital NHS Trust, John Radcliffe HospitalOxfordUK
  12. 12.Department of TraumatologyOslo University HospitalOsloNorway
  13. 13.Lee Kong Chian School of MedicineNanyang Technological UniversityNanyangSingapore
  14. 14.Center for Translational Injury ResearchUniversity of Texas Health Science CenterHoustonUSA
  15. 15.Departments of Haematology and PathologyGuy’s and St Thomas’ NHS Foundation TrustLondonUK
  16. 16.Department of Intensive CareAcademic Medical CenterAmsterdamThe Netherlands
  17. 17.Department for Traumatology and Orthopedic Surgery, Cologne-Merheim Medical CentreUniversity of Witten/HerdeckeCologneGermany
  18. 18.Rural Clinical School (Bundaberg)University of QueenslandBundabergAustralia
  19. 19.Department of SurgeryUniversity of FloridaGainesvilleUSA
  20. 20.Centre for Trauma SciencesQueen Mary University of LondonLondonUK
  21. 21.Critical Care Division, Department of AnesthesiologyUniversity of Alabama at BirminghamBirminghamUSA
  22. 22.Department of Anesthesiology and Intensive Care Medicine, AUVA Trauma Centre SalzburgAcademic Teaching Hospital of the Paracelsus Medical UniversitySalzburgAustria
  23. 23.Department of SurgeryOregon Health and Science UniversityPortlandUSA
  24. 24.Department of PediatricsWashington University in St Louis School of MedicineWashingtonUSA
  25. 25.NHS Blood and TransplantJohn Radcliffe HospitalOxfordUK
  26. 26.University of Kansas, Medical CenterKansas CityUSA

Personalised recommendations