Intensive Care Medicine

, Volume 43, Issue 10, pp 1453–1463 | Cite as

Optimum support by high-flow nasal cannula in acute hypoxemic respiratory failure: effects of increasing flow rates

  • Tommaso Mauri
  • Laura Alban
  • Cecilia Turrini
  • Barbara Cambiaghi
  • Eleonora Carlesso
  • Paolo Taccone
  • Nicola Bottino
  • Alfredo Lissoni
  • Savino Spadaro
  • Carlo Alberto Volta
  • Luciano Gattinoni
  • Antonio PesentiEmail author
  • Giacomo Grasselli
Seven-Day Profile Publication



Limited data exist on the correlation between higher flow rates of high-flow nasal cannula (HFNC) and its physiologic effects in patients with acute hypoxemic respiratory failure (AHRF). We assessed the effects of HFNC delivered at increasing flow rate on inspiratory effort, work of breathing, minute ventilation, lung volumes, dynamic compliance and oxygenation in AHRF patients.


A prospective randomized cross-over study was performed in non-intubated patients with patients AHRF and a PaO2/FiO2 (arterial partial pressure of oxygen/fraction of inspired oxygen) ratio of ≤300 mmHg. A standard non-occlusive facial mask and HFNC at different flow rates (30, 45 and 60 l/min) were randomly applied, while maintaining constant FiO2 (20 min/step). At the end of each phase, we measured arterial blood gases, inspiratory effort, based on swings in esophageal pressure (ΔPes) and on the esophageal pressure–time product (PTPPes), and lung volume, by electrical impedance tomography.


Seventeen patients with AHRF were enrolled in the study. At increasing flow rate, HFNC reduced ΔPes (p < 0.001) and PTPPes (p < 0.001), while end-expiratory lung volume (ΔEELV), tidal volume to ΔPes ratio (V T/ΔPes, which corresponds to dynamic lung compliance) and oxygenation improved (p < 0.01 for all factors). Higher HFNC flow rate also progressively reduced minute ventilation (p < 0.05) without any change in arterial CO2 tension (p = 0.909). The decrease in ΔPes, PTPPes and minute ventilation at increasing flow rates was better described by exponential fitting, while ΔEELV, V T/ΔPes and oxygenation improved linearly.


In this cohort of patients with AHRF, an increasing HFNC flow rate progressively decreased inspiratory effort and improved lung aeration, dynamic compliance and oxygenation. Most of the effect on inspiratory workload and CO2 clearance was already obtained at the lowest flow rate.


High-flow nasal oxygen Spontaneous breathing Electrical impedance tomography Esophageal pressure Acute lung injury Acute respiratory failure 


Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest related to the present study.

Ethical approval and consent to participate

The Ethical Committee of the Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy approved the study (reference number: 1628/2015), and informed consent was obtained from each patient according to local regulations.

Supplementary material

134_2017_4890_MOESM1_ESM.docx (27.8 mb)
Supplementary material 1 (DOCX 28433 kb)


  1. 1.
    Papazian L, Corley A, Hess D, Fraser JF, Frat JP, Guitton C, Jaber S, Maggiore SM, Nava S, Rello J, Ricard JD, Stephan F, Trisolini R, Azoulay E (2016) Use of high-flow nasal cannula oxygenation in ICU adults: a narrative review. Intensive Care Med 42(9):1336–1349CrossRefPubMedGoogle Scholar
  2. 2.
    Nishimura M (2016) High-flow nasal cannula oxygen therapy in adults: physiological benefits, indication, clinical benefits, and adverse effects. Respir Care 61(4):529–541CrossRefPubMedGoogle Scholar
  3. 3.
    Maggiore SM, Idone FA, Vaschetto R, Festa R, Cataldo A, Antonicelli F, Montini L, De Gaetano A, Navalesi P, Antonelli M (2014) Nasal high-flow versus Venturi mask oxygen therapy after extubation. Effects on oxygenation, comfort, and clinical outcome. Am J Respir Crit Care Med 190(3):282–288CrossRefPubMedGoogle Scholar
  4. 4.
    Frat JP, Thille AW, Mercat A, Girault C, Ragot S, Perbet S, Prat G, Boulain T, Morawiec E, Cottereau A, Devaquet J, Nseir S, Razazi K, Mira JP, Argaud L, Chakarian JC, Ricard JD, Wittebole X, Chevalier S, Herbland A, Fartoukh M, Constantin JM, Tonnelier JM, Pierrot M, Mathonnet A, Béduneau G, Delétage-Métreau C, Richard JC, Brochard L, Robert R, FLORALI Study Group; REVA Network (2015) High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med 372(23):2185–2196CrossRefPubMedGoogle Scholar
  5. 5.
    Stéphan F, Barrucand B, Petit P, Rézaiguia-Delclaux S, Médard A, Delannoy B, Cosserant B, Flicoteaux G, Imbert A, Pilorge C, Bérard L, BiPOP Study Group (2015) High-flow nasal oxygen vs noninvasive positive airway pressure in hypoxemic patients after cardiothoracic surgery: a randomized clinical trial. JAMA 313(23):2331–2339CrossRefPubMedGoogle Scholar
  6. 6.
    Hernández G, Vaquero C, González P, Subira C, Frutos-Vivar F, Rialp G, Laborda C, Colinas L, Cuena R, Fernández R (2016) Effect of postextubation high-flow nasal cannula vs conventional oxygen therapy on reintubation in low-risk patients: a randomized clinical trial. JAMA 315(13):1354–1361CrossRefPubMedGoogle Scholar
  7. 7.
    Hernández G, Vaquero C, Colinas L, Cuena R, González P, Canabal A, Sanchez S, Rodriguez ML, Villasclaras A, Fernández R (2016) Effect of postextubation high-flow nasal cannula vs noninvasive ventilation on reintubation and postextubation respiratory failure in high-risk patients: a randomized clinical trial. JAMA 316(15):1565–1574CrossRefPubMedGoogle Scholar
  8. 8.
    Mauri T, Turrini C, Eronia N, Grasselli G, Volta CA, Bellani G, Pesenti A (2017) Physiologic effects of high-flow nasal cannula in acute hypoxemic respiratory failure. Am J Respir Crit Care Med 195(9):1207–1215CrossRefPubMedGoogle Scholar
  9. 9.
    Spoletini G, Alotaibi M, Blasi F, Hill NS (2015) Heated humidified high-flow nasal oxygen in adults: mechanisms of action and clinical implications. Chest 148:253–261CrossRefPubMedGoogle Scholar
  10. 10.
    Chikata Y, Onodera M, Oto J, Nishimura M (2017) FIO2 in an adult model simulating high-flow nasal cannula therapy. Respir Care 62(2):193–198CrossRefPubMedGoogle Scholar
  11. 11.
    Lee JH, Rehder KJ, Willford L, Cheifetz IM, Turner DA (2013) Use of high flow nasal cannula in critically ill infants, children, and adults: a critical review of literature. Intensive Care Med 39(2):247–257CrossRefPubMedGoogle Scholar
  12. 12.
    Möller W, Feng S, Domanski U, Franke KJ, Celik G, Bartenstein P, Becker S, Meyer G, Schmid O, Eickelberg O, Tatkov S, Nilius G (2017) Nasal high flow reduces dead space. J Appl Physiol 122(1):191–197CrossRefPubMedGoogle Scholar
  13. 13.
    Groves N, Tobin A (2007) High flow nasal oxygen generates positive airway pressure in adult volunteers. Aust Crit Care 20(4):126–131CrossRefPubMedGoogle Scholar
  14. 14.
    Parke RL, Eccleston ML, McGuinness SP (2011) The effects of flow on airway pressure during nasal high flow oxygen therapy. Respir Care 56(8):1151–1155CrossRefPubMedGoogle Scholar
  15. 15.
    Parke RL, Bloch A, McGuinness SP (2015) Effect of very-high-flow nasal therapy on airway pressure and end-expiratory lung impedance in healthy volunteers. Respir Care 60(10):1397–1403CrossRefPubMedGoogle Scholar
  16. 16.
    Parke RL, Bloch A, McGuinness SP (2013) Pressure delivered by nasal high flow oxygen during all phases of respiratory cycle. Respir Care 58(10):1621–1624CrossRefPubMedGoogle Scholar
  17. 17.
    Ritchie JE, Williams AB, Gerard C, Hockey H (2011) Evaluation of humified nasal high-flow oxygen system, using oxygraphy, capnography and measurement of upper airway pressures. Anaesth Intensive Care 39(6):1103–1110PubMedGoogle Scholar
  18. 18.
    Chanques G, Riboulet F, Molinari N, Carr J, Jung B, Prades A, Galia F, Futier E, Constantin JM, Jaber S (2013) Comparison of three high flow oxygen therapy delivery devices: a clinical physiological cross-over study. Minerva Anestesiol 79(12):1344–1355PubMedGoogle Scholar
  19. 19.
    Mojoli F, Chiumello D, Pozzi M, Algieri I, Bianzina S, Luoni S, Volta CA, Braschi A, Brochard L (2015) Esophageal pressure measurements under different conditions of intrathoracic pressure. An in vitro study of second generation balloon catheters. Minerva Anestesiol 81(8):855–864PubMedGoogle Scholar
  20. 20.
    Mojoli F, Iotti GA, Torriglia F, Pozzi M, Volta CA, Bianzina S, Braschi A, Brochard L (2016) In vivo calibration of esophageal pressure in the mechanically ventilated patient makes measurements reliable. Crit Care 20(1):98CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Mauri T, Yoshida T, Bellani G, Goligher E, Carteaux G, Rittayamai N, Mojoli F, Chiumello D, Piquilloud L, Grasso S, Jubran A, Laghi F, Magder S, Pesenti A, Loring S, Gattinoni L, Talmor D, Blanch L, Amato M, Chen L, Brochard L, Mancebo J, the PLeUral pressure working Group (PLUG—Acute Respiratory Failure section of the European Society of Intensive Care Medicine) (2016) Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives. Intensive Care Med 42:1360–1373CrossRefPubMedGoogle Scholar
  22. 22.
    Mauri T, Eronia N, Abbruzzese C, Marcolin R, Coppadoro A, Spadaro S, Patroniti N, Bellani G, Pesenti A (2015) Effects of sigh on regional lung strain and ventilation heterogeneity in acute respiratory failure patients undergoing assisted mechanical ventilation. Crit Care Med 43(9):1823–1831CrossRefPubMedGoogle Scholar
  23. 23.
    Bellani G, Mauri T, Coppadoro A, Grasselli G, Patroniti N, Spadaro S, Sala V, Foti G, Pesenti A (2013) Estimation of patient’s inspiratory effort from the electrical activity of the diaphragm. Crit Care Med 41(6):1483–1491CrossRefPubMedGoogle Scholar
  24. 24.
    Wexler HR, Lok P (1981) A simple formula for adjusting arterial carbon dioxide tension. Can Anaesth Soc J 28(4):370–372CrossRefPubMedGoogle Scholar
  25. 25.
    Vargas F, Saint-Leger M, Boyer A, Bui NH, Hilbert G (2015) Physiologic effects of high-flow nasal cannula oxygen in critical care subjects. Respir Care 60(10):1369–1376CrossRefPubMedGoogle Scholar
  26. 26.
    Mundel T, Feng S, Tatkov S, Scheneider H (2013) Mechanisms of nasal high flow on ventilation during wakefulness and sleep. J Appl Physiol 114(8):1050–1065CrossRefGoogle Scholar
  27. 27.
    Onodera Y, Akimoto R, Suzuki H, Masaki N, Kawamae K (2017) A high-flow nasal cannula system set at relatively low flow effectively washes out CO2 from the anatomical dead space of a respiratory-system model. Korean J Anesthesiol 70(1):105–106CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Corley A, Caruana LR, Barnett AG, Tronstad O, Fraser JF (2011) Oxygen delivery through high-flow nasal cannulae increase end-expiratory lung volume and reduce respiratory rate in post-cardiac surgical patients. Br J Anaesth 107(6):998–1004CrossRefPubMedGoogle Scholar
  29. 29.
    Crotti S, Mascheroni D, Caironi P, Pelosi P, Ronzoni G, Mondino M, Marini JJ, Gattinoni L (2001) Recruitment and derecruitment during acute respiratory failure: a clinical study. Am J Respir Crit Care Med 164(1):131–140CrossRefPubMedGoogle Scholar
  30. 30.
    Van der Burg PS, Miedema M, de Jongh FH, Frerichs I, van Kaam AH (2014) Cross-sectional changes in lung volume measured by electrical impedance tomography are representative for the whole lung in ventilated preterm infants. Crit Care Med 42(6):1524–1530CrossRefPubMedGoogle Scholar
  31. 31.
    Mauri T, Eronia N, Turrini C, Battistini M, Grasselli G, Rona R, Volta CA, Bellani G, Pesenti A (2016) Bedside assessment of the effects of positive end-expiratory pressure on lung inflation and recruitment by the helium dilution technique and electrical impedance tomography. Intensive Care Med 42(10):1576–1587CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany and ESICM 2017

Authors and Affiliations

  • Tommaso Mauri
    • 1
    • 2
  • Laura Alban
    • 3
  • Cecilia Turrini
    • 3
  • Barbara Cambiaghi
    • 4
  • Eleonora Carlesso
    • 1
  • Paolo Taccone
    • 2
  • Nicola Bottino
    • 2
  • Alfredo Lissoni
    • 2
  • Savino Spadaro
    • 3
  • Carlo Alberto Volta
    • 3
  • Luciano Gattinoni
    • 5
  • Antonio Pesenti
    • 1
    • 2
    Email author
  • Giacomo Grasselli
    • 2
  1. 1.Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
  2. 2.Department of Anesthesia, Critical Care and EmergencyFondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
  3. 3.Department of Morphology, Surgery and Experimental Medicine, Section of Anesthesia and Intensive CareUniversity of FerraraFerraraItaly
  4. 4.Department of Medicine and SurgeryUniversity of Milan-BicoccaMonzaItaly
  5. 5.Department of Anesthesiology, Emergency and Intensive Care MedicineUniversity of GöttingenGöttingenGermany

Personalised recommendations