Advertisement

Intensive Care Medicine

, Volume 43, Issue 11, pp 1572–1584 | Cite as

Randomized, multicenter trial of lateral Trendelenburg versus semirecumbent body position for the prevention of ventilator-associated pneumonia

  • Gianluigi Li Bassi
  • Mauro Panigada
  • Otavio T. Ranzani
  • Alberto Zanella
  • Lorenzo Berra
  • Massimo Cressoni
  • Vieri Parrini
  • Hassan Kandil
  • Giovanni Salati
  • Paola Selvaggi
  • Alessandro Amatu
  • Miquel Sanz-Moncosi
  • Emanuela Biagioni
  • Fernanda Tagliaferri
  • Mirella Furia
  • Giovanna Mercurio
  • Antonietta Costa
  • Tullio Manca
  • Simone Lindau
  • Jaksa Babel
  • Marco Cavana
  • Chiara Chiurazzi
  • Joan-Daniel Marti
  • Dario Consonni
  • Luciano Gattinoni
  • Antonio Pesenti
  • Janine Wiener-Kronish
  • Cecilia Bruschi
  • Andrea Ballotta
  • Pierpaolo Salsi
  • Sergio Livigni
  • Giorgio Iotti
  • Javier Fernandez
  • Massimo Girardis
  • Maria Barbagallo
  • Gabriella Moise
  • Massimo Antonelli
  • Maria Luisa Caspani
  • Antonella Vezzani
  • Patrick Meybohm
  • Vladimir Gasparovic
  • Edoardo Geat
  • Marcelo Amato
  • Michael Niederman
  • Theodor Kolobow
  • Antoni Torres
  • for the Gravity-VAP Network
Original

Abstract

Purpose

The lateral Trendelenburg position (LTP) may hinder the primary pathophysiologic mechanism of ventilator-associated pneumonia (VAP). We investigated whether placing patients in the LTP would reduce the incidence of VAP in comparison with the semirecumbent position (SRP).

Methods

This was a randomized, multicenter, controlled study in invasively ventilated critically ill patients. Two preplanned interim analyses were performed. Patients were randomized to be placed in the LTP or the SRP. The primary outcome, assessed by intention-to-treat analysis, was incidence of microbiologically confirmed VAP. Major secondary outcomes included mortality, duration of mechanical ventilation, and intensive care unit length of stay.

Results

At the second interim analysis, the trial was stopped because of low incidence of VAP, lack of benefit in secondary outcomes, and occurrence of adverse events. A total of 194 patients in the LTP group and 201 in the SRP group were included in the final intention-to-treat analysis. The incidence of microbiologically confirmed VAP was 0.5% (1/194) and 4.0% (8/201) in LTP and SRP patients, respectively (relative risk 0.13, 95% CI 0.02–1.03, p = 0.04). The 28-day mortality was 30.9% (60/194) and 26.4% (53/201) in LTP and SRP patients, respectively (relative risk 1.17, 95% CI 0.86–1.60, p = 0.32). Likewise, no differences were found in other secondary outcomes. Six serious adverse events were described in LTP patients (p = 0.01 vs. SRP).

Conclusions

The LTP slightly decreased the incidence of microbiologically confirmed VAP. Nevertheless, given the early termination of the trial, the low incidence of VAP, and the adverse events associated with the LTP, the study failed to prove any significant benefit. Further clinical investigation is strongly warranted; however, at this time, the LTP cannot be recommended as a VAP preventive measure.

ClinicalTrials.gov identifier

NCT01138540.

Keywords

Ventilator-associated pneumonia Semirecumbent position Mechanical ventilation Endotracheal intubation Trendelenburg position 

Notes

Acknowledgements

We deeply thank the nurses and respiratory therapists of all collaborating centers; this work would have been impossible without their help. Additionally, we acknowledge Alessandro Protti and Giacomo Grasselli for their support in implementing the study protocol.

Compliance with ethical standards

Conflicts of interest

Mauro Panigada obtained research funds from the European Society of Intensive Care Medicine and Hill-Rom, Inc., Batesville, IN, USA, a manufacturer of hospital beds. All remaining authors declare no conflict of interest related to this manuscript. The project is endorsed by the ECCRN of the European Society of Intensive Care Medicine.

Supplementary material

134_2017_4858_MOESM1_ESM.docx (1 mb)
Supplementary material 1 (DOCX 1064 kb)
134_2017_4858_MOESM2_ESM.pdf (4.8 mb)
Supplementary material 2 (PDF 4869 kb)

References

  1. 1.
    Wang Y, Eldridge N, Metersky ML, Verzier NR, Meehan TP, Pandolfi MM, Foody JM, Ho SY, Galusha D, Kliman RE, Sonnenfeld N, Krumholz HM, Battles J (2014) National trends in patient safety for four common conditions, 2005-2011. N Engl J Med 370:341–351. doi: 10.1056/NEJMsa1300991 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Warren DK, Shukla SJ, Olsen MA, Kollef MH, Hollenbeak CS, Cox MJ, Cohen MM, Fraser VJ (2003) Outcome and attributable cost of ventilator-associated pneumonia among intensive care unit patients in a suburban medical center. Crit Care Med 31:1312–1317. doi: 10.1097/01.CCM.0000063087.93157.06 CrossRefPubMedGoogle Scholar
  3. 3.
    Metersky ML, Wang Y, Klompas M, Eckenrode S, Bakullari A, Eldridge N (2016) Trend in ventilator-associated pneumonia rates between 2005 and 2013. JAMA 316:2427–2429. doi: 10.1001/jama.2016.16226 CrossRefPubMedGoogle Scholar
  4. 4.
    Dudeck MA, Edwards JR, Allen-Bridson K, Gross C, Malpiedi PJ, Peterson KD, Pollock DA, Weiner LM, Sievert DM (2015) National Healthcare Safety Network (NHSN) report, data summary for 2013, device-associated module. Am J Infect Control 43:206–221. doi: 10.1016/j.ajic.2014.11.014 CrossRefPubMedGoogle Scholar
  5. 5.
    Rosenthal VD, Al-Abdely HM, El-Kholy AA, AlKhawaja SA, Leblebicioglu H, Mehta Y, Rai V, Hung NV, Kanj SS, Salama MF, Salgado-Yepez E, Elahi N, Morfin Otero R, Apisarnthanarak A, De Carvalho BM, Ider BE, Fisher D, Buenaflor MC, Petrov MM, Quesada-Mora AM, Zand F, Gurskis V, Anguseva T, Ikram A, Aguilar de Moros D, Duszynska W, Mejia N, Horhat FG, Belskiy V, Mioljevic V, Di Silvestre G, Furova K, Ramos-Ortiz GY, Gamar Elanbya MO, Satari HI, Gupta U, Dendane T, Raka L, Guanche-Garcell H, Hu B, Padgett D, Jayatilleke K, Ben Jaballah N, Apostolopoulou E, Prudencio Leon WE, Sepulveda-Chavez A, Telechea HM, Trotter A, Alvarez-Moreno C, Kushner-Davalos L (2016) International Nosocomial Infection Control Consortium report, data summary of 50 countries for 2010-2015: device-associated module. Am J Infect Control 44:1495–1504. doi: 10.1016/j.ajic.2016.08.007 CrossRefPubMedGoogle Scholar
  6. 6.
    Torres A, El-Ebiary M, Soler N, Montón C, Fàbregas N, Hernández C (1996) Stomach as a source of colonization of the respiratory tract during mechanical ventilation: association with ventilator-associated pneumonia. Eur Respir J 9:1729–1735CrossRefPubMedGoogle Scholar
  7. 7.
    Krag M, Perner A, Wetterslev J, Wise MP, Hylander Møller M (2014) Stress ulcer prophylaxis versus placebo or no prophylaxis in critically ill patients. A systematic review of randomised clinical trials with meta-analysis and trial sequential analysis. Intensive Care Med 40:11–22CrossRefPubMedGoogle Scholar
  8. 8.
    Torres A, Serra-Batlles J, Ros E, Piera C, Puig de la Bellacasa J, Cobos A, Lomeña F, Rodríguez-Roisin R (1992) Pulmonary aspiration of gastric contents in patients receiving mechanical ventilation: the effect of body position. Ann Intern Med 116:540–543CrossRefPubMedGoogle Scholar
  9. 9.
    Torres A, el-Ebiary M, González J, Ferrer M, Puig de la Bellacasa J, Gené A, Martos A, Rodriguez-Roisin R (1993) Gastric and pharyngeal flora in nosocomial pneumonia acquired during mechanical ventilation. Am Rev Respir Dis 148:352–357CrossRefPubMedGoogle Scholar
  10. 10.
    Nseir S, Zerimech F, Fournier C, Lubret R, Ramon P, Durocher A, Balduyck M (2011) Continuous control of tracheal cuff pressure and microaspiration of gastric contents in critically ill patients. Am J Respir Crit Care Med 184:1041–1047. doi: 10.1164/rccm.201104-0630OC CrossRefPubMedGoogle Scholar
  11. 11.
    Philippart F, Gaudry S, Quinquis L, Lau N, Ouanes I, Touati S, Nguyen JC, Branger C, Faibis F, Mastouri M, Forceville X, Abroug F, Ricard JD, Grabar S, Misset B, TOP-Cuff Study Group (2015) Randomized intubation with polyurethane or conical cuffs to prevent pneumonia in ventilated patients. Am J Respir Crit Care Med 191:637–645. doi: 10.1164/rccm.201408-1398OC CrossRefPubMedGoogle Scholar
  12. 12.
    Branch-Elliman W, Wright SB, Howell MD (2015) Determining the ideal strategy for ventilator-associated pneumonia prevention: cost-benefit analysis. Am J Respir Crit Care Med 192:57–63. doi: 10.1164/rccm.201412-2316OC CrossRefPubMedGoogle Scholar
  13. 13.
    Orozco-Levi M, Torres A, Ferrer M, Piera C, el-Ebiary M, de la Bellacasa JP, Rodriguez-Roisin R (1995) Semirecumbent position protects from pulmonary aspiration but not completely from gastroesophageal reflux in mechanically ventilated patients. Am J Respir Crit Care Med 152:1387–1390CrossRefPubMedGoogle Scholar
  14. 14.
    Drakulovic MB, Torres A, Bauer TT, Nicolas JM, Nogué S, Ferrer M (1999) Supine body position as a risk factor for nosocomial pneumonia in mechanically ventilated patients: a randomised trial. Lancet 354:1851–1858. doi: 10.1016/S0140-6736(98)12251-1 CrossRefPubMedGoogle Scholar
  15. 15.
    Wang L, Li X, Yang Z, Tang X, Yuan Q, Deng L, Sun X (2016) Semi-recumbent position versus supine position for the prevention of ventilator-associated pneumonia in adults requiring mechanical ventilation. Cochrane Database Syst Rev. doi: 10.1002/14651858.CD009946.pub2 Google Scholar
  16. 16.
    van Nieuwenhoven CA, Vandenbroucke-Grauls C, van Tiel FH, Joore HC, van Schijndel RJ, van der Tweel I, Ramsay G, Bonten MJ (2006) Feasibility and effects of the semirecumbent position to prevent ventilator-associated pneumonia: a randomized study. Crit Care Med 34:396–402. doi: 10.1097/01.CCM.0000198529.76602.5E CrossRefPubMedGoogle Scholar
  17. 17.
    Li Bassi G, Marti JD, Saucedo L, Rigol M, Roca I, Cabanas M, Muñoz L, Ranzani OT, Giunta V, Luque N, Esperatti M, Gabarrus A, Fernandez L, Rinaudo M, Ferrer M, Ramirez J, Vila J, Torres A (2014) Gravity predominates over ventilatory pattern in the prevention of ventilator-associated pneumonia. Crit Care Med 42:e620–e627. doi: 10.1097/CCM.0000000000000487 CrossRefPubMedGoogle Scholar
  18. 18.
    Li Bassi G, Zanella A, Cressoni M, Stylianou M, Kolobow T (2008) Following tracheal intubation, mucus flow is reversed in the semirecumbent position: possible role in the pathogenesis of ventilator-associated pneumonia. Crit Care Med 36:518–525. doi: 10.1097/01.CCM.0000299741.32078.E9 CrossRefPubMedGoogle Scholar
  19. 19.
    Panigada M, Berra L, Greco G, Stylianou M, Kolobow T (2003) Bacterial colonization of the respiratory tract following tracheal intubation-effect of gravity: an experimental study. Crit Care Med 31:729–737. doi: 10.1097/01.CCM.0000049943.01252.E5 CrossRefPubMedGoogle Scholar
  20. 20.
    Zanella A, Cressoni M, Epp M, Hoffmann V, Stylianou M, Kolobow T (2012) Effects of tracheal orientation on development of ventilator-associated pneumonia: an experimental study. Intensive Care Med 38:677–685. doi: 10.1007/s00134-012-2495-2 CrossRefPubMedGoogle Scholar
  21. 21.
    Mauri T, Berra L, Kumwilaisak K, Pivi S, Ufberg JW, Kueppers F, Pesenti A, Bigatello LM (2010) Lateral-horizontal patient position and horizontal orientation of the endotracheal tube to prevent aspiration in adult surgical intensive care unit patients: a feasibility study. Respir Care 55:294–302PubMedGoogle Scholar
  22. 22.
    Aly H, Badawy M, El-Kholy A, Nabil R, Mohamed A (2008) Randomized, controlled trial on tracheal colonization of ventilated infants: can gravity prevent ventilator-associated pneumonia? Pediatrics 122:770–774. doi: 10.1542/peds.2007-1826 CrossRefPubMedGoogle Scholar
  23. 23.
    Kalil AC, Metersky ML, Klompas M, Muscedere J, Sweeney DA, Palmer LB, Napolitano LM, O’Grady NP, Bartlett JG, Carratalà J, El Solh AA, Ewig S, Fey PD, File TM Jr, Restrepo MI, Roberts JA, Waterer GW, Cruse P, Knight SL, Brozek JL (2016) Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis 63:e61–e111. doi: 10.1093/cid/ciw353 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    de Jong E, van Oers JA, Beishuizen A, Vos P, Vermeijden WJ, Haas LE, Loef BG, Dormans T, van Melsen GC, Kluiters YC, Kemperman H, van den Elsen MJ, Schouten JA, Streefkerk JO, Krabbe HG, Kieft H, Kluge GH, van Dam VC, van Pelt J, Bormans L, Otten MB, Reidinga AC, Endeman H, Twisk JW, van de Garde EM, de Smet AM, Kesecioglu J, Girbes AR, Nijsten MW, de Lange DW (2016) Efficacy and safety of procalcitonin guidance in reducing the duration of antibiotic treatment in critically ill patients: a randomised, controlled, open-label trial. Lancet Infect Dis 16:819–827. doi: 10.1016/S1473-3099(16)00053-0 CrossRefPubMedGoogle Scholar
  25. 25.
    Schweickert WD, Gehlbach BK, Pohlman AS, Hall JB, Kress JP (2004) Daily interruption of sedative infusions and complications of critical illness in mechanically ventilated patients. Crit Care Med 32:1272–1276. doi: 10.1097/01.CCM.0000127263.54807.79 CrossRefPubMedGoogle Scholar
  26. 26.
    Schulz KF, Altman DG, Moher D, CONSORT Group (2010) CONSORT 2010 statement: updated guidelines for reporting parallel group randomized trials. Ann Intern Med 152:726–732. doi: 10.7326/0003-4819-152-11-201006010-00232 CrossRefPubMedGoogle Scholar
  27. 27.
    Wolkewitz M, Cooper BS, Bonten MJ, Barnett AG, Schumacher M (2014) Interpreting and comparing risks in the presence of competing events. BMJ 349:g5060. doi: 10.1136/bmj.g5060 CrossRefPubMedGoogle Scholar
  28. 28.
    Young P, Saxena M, Bellomo R, Freebairn R, Hammond N, van Haren F, Holliday M, Henderson S, Mackle D, McArthur C, McGuinness S, Myburgh J, Weatherall M, Webb S, Beasley R, HEAT Investigators; Australian and New Zealand Intensive Care Society Clinical Trials Group (2015) Acetaminophen for fever in critically ill patients with suspected infection. N Engl J Med 373:2215–2224. doi: 10.1056/NEJMoa1508375 CrossRefPubMedGoogle Scholar
  29. 29.
    Angrist JD, Imbens GW, Rubin DB (1996) Identification of causal effects using instrumental variables. J Am Stat Assoc 91:444–455CrossRefGoogle Scholar
  30. 30.
    Kollef MH, Afessa B, Anzueto A, Veremakis C, Kerr KM, Margolis BD, Craven DE, Roberts PR, Arroliga AC, Hubmayr RD, Restrepo MI, Auger WR, Schinner R, NASCENT Investigation Group (2008) Silver-coated endotracheal tubes and incidence of ventilator-associated pneumonia: the NASCENT randomized trial. JAMA 300:805–813. doi: 10.1001/jama.300.7.805 CrossRefPubMedGoogle Scholar
  31. 31.
    Rello J, Ollendorf DA, Oster G, Vera-Llonch M, Bellm L, Redman R, Kollef M (2002) Epidemiology and outcomes of ventilator-associated pneumonia in a large US database. Chest 122:2115–2121. doi: 10.1378/chest.122.6.2115 CrossRefPubMedGoogle Scholar
  32. 32.
    Cook DJ, Walter SD, Cook RJ, Griffith LE, Guyatt GH, Leasa D, Jaeschke RZ, Brun-Buisson C (1998) Incidence of and risk factors for ventilator-associated pneumonia in critically ill patients. Ann Intern Med 129:433–440. doi: 10.7326/0003-4819-129-6-199809150-00002 CrossRefPubMedGoogle Scholar
  33. 33.
    Marini JJ, Gattinoni L (2008) Propagation prevention: a complementary mechanism for “lung protective” ventilation in acute respiratory distress syndrome. Crit Care Med 36:3252–3258. doi: 10.1097/CCM.0b013e31818f0e68 CrossRefPubMedGoogle Scholar
  34. 34.
    Simonis G, Flemming K, Ziegs E, Haacke K, Rauwolf T, Strasser RH (2007) Kinetic therapy reduces complications and shortens hospital stay in patients with cardiogenic shock - a retrospective analysis. Eur J Cardiovasc Nurs 6:40–45. doi: 10.1016/j.ejcnurse.2006.03.008 CrossRefPubMedGoogle Scholar
  35. 35.
    Goldhill DR, Badacsonyi A, Goldhill AA, Waldmann C (2008) A prospective observational study of ICU patient position and frequency of turning. Anaesthesia 63:509–515. doi: 10.1111/j.1365-2044.2007.05431.x CrossRefPubMedGoogle Scholar
  36. 36.
    Ayzac L, Girard R, Baboi L, Beuret P, Rabilloud M, Richard JC, Guérin C (2015) Ventilator-associated pneumonia in ARDS patients: the impact of prone positioning. A secondary analysis of the PROSEVA trial. Intensive Care Med 42:871–878. doi: 10.1007/s00134-015-4167-5 CrossRefPubMedGoogle Scholar
  37. 37.
    Hernán MA, Hernández-Díaz S (2012) Beyond the intention-to-treat in comparative effectiveness research. Clin Trials 9:48–55. doi: 10.1177/1740774511420743 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany and ESICM 2017

Authors and Affiliations

  • Gianluigi Li Bassi
    • 1
    • 2
    • 3
    • 4
  • Mauro Panigada
    • 5
  • Otavio T. Ranzani
    • 1
    • 3
    • 4
    • 6
  • Alberto Zanella
    • 5
  • Lorenzo Berra
    • 7
  • Massimo Cressoni
    • 8
  • Vieri Parrini
    • 9
  • Hassan Kandil
    • 10
  • Giovanni Salati
    • 11
  • Paola Selvaggi
    • 12
  • Alessandro Amatu
    • 13
  • Miquel Sanz-Moncosi
    • 14
  • Emanuela Biagioni
    • 15
  • Fernanda Tagliaferri
    • 16
  • Mirella Furia
    • 17
  • Giovanna Mercurio
    • 18
  • Antonietta Costa
    • 16
  • Tullio Manca
    • 16
  • Simone Lindau
    • 19
  • Jaksa Babel
    • 20
  • Marco Cavana
    • 21
  • Chiara Chiurazzi
    • 8
  • Joan-Daniel Marti
    • 1
  • Dario Consonni
    • 5
  • Luciano Gattinoni
    • 22
  • Antonio Pesenti
    • 5
  • Janine Wiener-Kronish
    • 7
  • Cecilia Bruschi
    • 9
  • Andrea Ballotta
    • 10
  • Pierpaolo Salsi
    • 11
  • Sergio Livigni
    • 12
  • Giorgio Iotti
    • 13
  • Javier Fernandez
    • 14
  • Massimo Girardis
    • 15
  • Maria Barbagallo
    • 16
  • Gabriella Moise
    • 17
  • Massimo Antonelli
    • 18
  • Maria Luisa Caspani
    • 16
  • Antonella Vezzani
    • 16
  • Patrick Meybohm
    • 19
  • Vladimir Gasparovic
    • 20
  • Edoardo Geat
    • 21
  • Marcelo Amato
    • 6
  • Michael Niederman
    • 23
  • Theodor Kolobow
    • 24
  • Antoni Torres
    • 1
    • 2
    • 3
    • 4
  • for the Gravity-VAP Network
  1. 1.Department of Pulmonary and Critical Care MedicineHospital ClinicBarcelonaSpain
  2. 2.University of BarcelonaBarcelonaSpain
  3. 3.CIBER Enfermedades Respiratorias (CIBERES)MajorcaSpain
  4. 4.Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
  5. 5.Fondazione IRCCS Ca’ Granda - Ospedale Maggiore PoliclinicoMilanItaly
  6. 6.Pulmonary Division, InCorFaculdade de Medicina - University of São PauloSão PauloBrazil
  7. 7.Massachusetts General HospitalBostonUSA
  8. 8.Dipartimento di Fisiopatologia Medico-Chirurgica e dei TrapiantiUniverstà degli Studi di MilanoMilanItaly
  9. 9.Ospedale Nuovo del MugelloBorgo San LorenzoItaly
  10. 10.IRCCS Policlinico San DonatoSan Donato MilaneseItaly
  11. 11.Arcispedale S. Maria Nuova - IRCCSReggio EmiliaItaly
  12. 12.Ospedale San Giovanni BoscoTurinItaly
  13. 13.Policlinico San MatteoPaviaItaly
  14. 14.Liver UnitHospital ClinicBarcelonaSpain
  15. 15.Policlinico di ModenaModenaItaly
  16. 16.Azienda Ospedaliero-Universitaria di ParmaParmaItaly
  17. 17.Ospedale Città di Sesto San GiovanniSesto San GiovanniItaly
  18. 18.Fondazione Policlinico Universitario A. Gemelli-Università Cattolica del Sacro CuoreRomeItaly
  19. 19.University Hospital FrankfurtFrankfurtGermany
  20. 20.University Hospital Center ZagrebZagrebCroatia
  21. 21.Ospedale Santa ChiaraTrentoItaly
  22. 22.University of GöttingenGöttingenGermany
  23. 23.Weill Cornell Medicine PulmonaryNew YorkUSA
  24. 24.National Institutes of HealthBethesdaUSA

Personalised recommendations