Intensive Care Medicine

, Volume 43, Issue 6, pp 807–815 | Cite as

Fluid management in acute kidney injury

  • Anders PernerEmail author
  • John Prowle
  • Michael Joannidis
  • Paul Young
  • Peter B. Hjortrup
  • Ville Pettilä


Acute kidney injury (AKI) and fluids are closely linked through oliguria, which is a marker of the former and a trigger for administration of the latter. Recent progress in this field has challenged the physiological and clinical rational of using oliguria as a trigger for the administration of fluid and brought attention to the delicate balance between benefits and harms of different aspects of fluid management in critically ill patients, in particular those with AKI. This narrative review addresses various aspects of fluid management in AKI outlining physiological aspects, the effects of crystalloids and colloids on kidney function and the effect of various resuscitation and de-resuscitation strategies on the course and outcome of AKI.


Acute kidney injury Critical Care Fluid Intravenous fluid Kidney failure Renal failure Sepsis Shock 


Compliance with ethical standards

Conflicts of interest

AP is member of the steering committee and national investigator of a vasopressin trial in septic shock sponsored by Ferring Pharmaceuticals; his department is reimbursed for his time. The department also receives research funding from Fresenius Kabi and CSL Behring. MJ is a consultant or speaker for Baxter, Fresenius, Asahi Kasei, Astute, CSL Behring. PY is a member of the Plasmalyte vs. Saline (PLUS) trial management committee. Baxter Healthcare is providing fluids for this trial.


  1. 1.
    Himmelfarb J, Joannidis M, Molitoris B et al (2008) Evaluation and initial management of acute kidney injury. Clin J Am Soc Nephrol 3:962–967. doi: 10.2215/CJN.04971107 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Lehner GF, Forni LG, Joannidis M (2016) Oliguria and biomarkers of acute kidney injury: star struck lovers or strangers in the night? Nephron 134:183–190. doi: 10.1159/000447979 CrossRefPubMedGoogle Scholar
  3. 3.
    Ostermann M, Joannidis M (2016) Acute kidney injury 2016: diagnosis and diagnostic workup. Crit Care 20:299. doi: 10.1186/s13054-016-1478-z CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group (2012) KDIGO clinical practice guideline for acute kidney injury. Accessed 1 Jan 2017.
  5. 5.
    Cecconi M, Hofer C, Teboul J-L et al (2015) Fluid challenges in intensive care: the FENICE study: a global inception cohort study. Intensive Care Med 41:1529–1537. doi: 10.1007/s00134-015-3850-x CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Hoste EAJ, Bagshaw SM, Bellomo R et al (2015) Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med 41:1411–1423. doi: 10.1007/s00134-015-3934-7 CrossRefPubMedGoogle Scholar
  7. 7.
    Ostermann M, Joannidis M, Pani A et al (2016) Patient selection and timing of continuous renal replacement therapy. Blood Purif 42:224–237. doi: 10.1159/000448506 CrossRefPubMedGoogle Scholar
  8. 8.
    Raimundo M, Crichton S, Martin JR et al (2015) Increased fluid administration after early acute kidney injury is associated with less renal recovery. Shock Augusta Ga 44:431–437. doi: 10.1097/SHK.0000000000000453 CrossRefGoogle Scholar
  9. 9.
    Prowle JR, Liu Y-L, Licari E et al (2011) Oliguria as predictive biomarker of acute kidney injury in critically ill patients. Crit Care 15:R172. doi: 10.1186/cc10318 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Vaara ST, Parviainen I, Pettilä V et al (2016) Association of oliguria with the development of acute kidney injury in the critically ill. Kidney Int 89:200–208. doi: 10.1016/j.kint.2015.12.007 CrossRefPubMedGoogle Scholar
  11. 11.
    Prowle JR, Ishikawa K, May CN, Bellomo R (2010) Renal plasma flow and glomerular filtration rate during acute kidney injury in man. Ren Fail 32:349–355. doi: 10.3109/08860221003611695 CrossRefPubMedGoogle Scholar
  12. 12.
    Calzavacca P, Evans RG, Bailey M et al (2015) Cortical and medullary tissue perfusion and oxygenation in experimental septic acute kidney injury. Crit Care Med 43:e431–e439. doi: 10.1097/CCM.0000000000001198 CrossRefPubMedGoogle Scholar
  13. 13.
    Prowle JR, Molan MP, Hornsey E, Bellomo R (2012) Measurement of renal blood flow by phase-contrast magnetic resonance imaging during septic acute kidney injury: a pilot investigation. Crit Care Med 40:1768–1776. doi: 10.1097/CCM.0b013e318246bd85 CrossRefPubMedGoogle Scholar
  14. 14.
    Parekh N, Veith U (1981) Renal hemodynamics and oxygen consumption during postischemic acute renal failure in the rat. Kidney Int 19:306–316CrossRefPubMedGoogle Scholar
  15. 15.
    Redfors B, Bragadottir G, Sellgren J et al (2010) Acute renal failure is NOT an “acute renal success”—a clinical study on the renal oxygen supply/demand relationship in acute kidney injury. Crit Care Med 38:1695–1701. doi: 10.1097/CCM.0b013e3181e61911 CrossRefPubMedGoogle Scholar
  16. 16.
    Saotome T, Ishikawa K, May CN et al (2010) The impact of experimental hypoperfusion on subsequent kidney function. Intensive Care Med 36:533–540. doi: 10.1007/s00134-009-1740-9 CrossRefPubMedGoogle Scholar
  17. 17.
    De Backer D, Creteur J, Preiser J-C et al (2002) Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 166:98–104CrossRefPubMedGoogle Scholar
  18. 18.
    Lee WL, Slutsky AS (2010) Sepsis and endothelial permeability. N Engl J Med 363:689–691. doi: 10.1056/NEJMcibr1007320 CrossRefPubMedGoogle Scholar
  19. 19.
    Nijssen EC, Rennenberg RJ, Nelemans PJ et al (2017) Prophylactic hydration to protect renal function from intravascular iodinated contrast material in patients at high risk of contrast-induced nephropathy (AMACING): a prospective, randomised, phase 3, controlled, open-label, non-inferiority trial. Lancet. doi: 10.1016/S0140-6736(17)30057-0 PubMedGoogle Scholar
  20. 20.
    Legrand M, Le Cam B, Perbet S et al (2016) Urine sodium concentration to predict fluid responsiveness in oliguric ICU patients: a prospective multicenter observational study. Crit Care 20:165. doi: 10.1186/s13054-016-1343-0 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Zafrani L, Ergin B, Kapucu A, Ince C (2016) Blood transfusion improves renal oxygenation and renal function in sepsis-induced acute kidney injury in rats. Crit Care 20:406. doi: 10.1186/s13054-016-1581-1 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hoste EA, Maitland K, Brudney CS et al (2014) Four phases of intravenous fluid therapy: a conceptual model. Br J Anaesth 113:740–747. doi: 10.1093/bja/aeu300 CrossRefPubMedGoogle Scholar
  23. 23.
    Hammond NE, Taylor C, Saxena M et al (2015) Resuscitation fluid use in Australian and New Zealand intensive care units between 2007 and 2013. Intensive Care Med 41:1611–1619. doi: 10.1007/s00134-015-3878-y CrossRefPubMedGoogle Scholar
  24. 24.
    Myburgh JA, Finfer S, Bellomo R et al (2012) Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med 367:1901–1911. doi: 10.1056/NEJMoa1209759 CrossRefPubMedGoogle Scholar
  25. 25.
    Zarychanski R, Abou-Setta AM, Turgeon AF et al (2013) Association of hydroxyethyl starch administration with mortality and acute kidney injury in critically ill patients requiring volume resuscitation: a systematic review and meta-analysis. JAMA 309:678–688. doi: 10.1001/jama.2013.430 CrossRefPubMedGoogle Scholar
  26. 26.
    Perner A, Haase N, Guttormsen AB et al (2012) Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis. N Engl J Med 367:124–134. doi: 10.1056/NEJMoa1204242 CrossRefPubMedGoogle Scholar
  27. 27.
    Haase N, Perner A, Hennings LI et al (2013) Hydroxyethyl starch 130/0.38-0.45 versus crystalloid or albumin in patients with sepsis: systematic review with meta-analysis and trial sequential analysis. BMJ 346:f839CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Rochwerg B, Alhazzani W, Gibson A et al (2015) Fluid type and the use of renal replacement therapy in sepsis: a systematic review and network meta-analysis. Intensive Care Med 41:1561–1571. doi: 10.1007/s00134-015-3794-1 CrossRefPubMedGoogle Scholar
  29. 29.
    Rhodes A, Evans LE, Alhazzani W et al (2017) Surviving Sepsis Campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. doi: 10.1007/s00134-017-4683-6 Google Scholar
  30. 30.
    FDA (2013) FDA Safety Communication: Boxed Warning on increased mortality and severe renal injury, and additional warning on risk of bleeding, for use of hydroxyethyl starch solutions in some settings. Accessed 1 Jan 2017.
  31. 31.
    EMA (2013) Hydroxyethyl-starch solutions (HES) should no longer be used in patients with sepsis or burn injuries or in critically ill patients. Accessed 1 Jan 2017.
  32. 32.
    Moeller C, Fleischmann C, Thomas-Rueddel D et al (2016) How safe is gelatin? A systematic review and meta-analysis of gelatin-containing plasma expanders vs crystalloids and albumin. J Crit Care 35:75–83. doi: 10.1016/j.jcrc.2016.04.011 CrossRefPubMedGoogle Scholar
  33. 33.
    Bayer O, Reinhart K, Kohl M et al (2012) Effects of fluid resuscitation with synthetic colloids or crystalloids alone on shock reversal, fluid balance, and patient outcomes in patients with severe sepsis: a prospective sequential analysis. Crit Care Med 40:2543–2551. doi: 10.1097/CCM.0b013e318258fee7 CrossRefPubMedGoogle Scholar
  34. 34.
    Bayer O, Schwarzkopf D, Doenst T et al (2013) Perioperative fluid therapy with tetrastarch and gelatin in cardiac surgery—a prospective sequential analysis. Crit Care Med 41:2532–2542. doi: 10.1097/CCM.0b013e3182978fb6 CrossRefPubMedGoogle Scholar
  35. 35.
    Finfer S, Bellomo R, Boyce N et al (2004) A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med 350:2247–2256. doi: 10.1056/NEJMoa040232 CrossRefPubMedGoogle Scholar
  36. 36.
    Caironi P, Tognoni G, Masson S et al (2014) Albumin replacement in patients with severe sepsis or septic shock. N Engl J Med 370:1412–1421. doi: 10.1056/NEJMoa1305727 CrossRefPubMedGoogle Scholar
  37. 37.
    Perel P, Roberts I, Ker K (2013) Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev. doi: 10.1002/14651858.CD000567.pub6 Google Scholar
  38. 38.
    Wilcox CS (1983) Regulation of renal blood flow by plasma chloride. J Clin Invest 71:726–735CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Chowdhury AH, Cox EF, Francis ST, Lobo DN (2012) A randomized, controlled, double-blind crossover study on the effects of 2-L infusions of 0.9% saline and Plasma-Lyte® 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers. Ann Surg 256:18–24. doi: 10.1097/SLA.0b013e318256be72 CrossRefPubMedGoogle Scholar
  40. 40.
    Morsing P, Velazquez H, Ellison D, Wright FS (1993) Resetting of tubuloglomerular feedback by interrupting early distal flow. Acta Physiol Scand 148:63–68. doi: 10.1111/j.1748-1716.1993.tb09532.x CrossRefPubMedGoogle Scholar
  41. 41.
    Schnermann J, Ploth DW, Hermle M (1976) Activation of tubulo-glomerular feedback by chloride transport. Pflugers Arch 362:229–240CrossRefPubMedGoogle Scholar
  42. 42.
    Handy JM, Soni N (2008) Physiological effects of hyperchloraemia and acidosis. Br J Anaesth 101:141–150. doi: 10.1093/bja/aen148 CrossRefPubMedGoogle Scholar
  43. 43.
    Morgan TJ, Venkatesh B, Hall J (2002) Crystalloid strong ion difference determines metabolic acid-base change during in vitro hemodilution. Crit Care Med 30:157–160CrossRefPubMedGoogle Scholar
  44. 44.
    Krajewski ML, Raghunathan K, Paluszkiewicz SM et al (2015) Meta-analysis of high- versus low-chloride content in perioperative and critical care fluid resuscitation. Br J Surg 102:24–36. doi: 10.1002/bjs.9651 CrossRefPubMedGoogle Scholar
  45. 45.
    Yunos NM, Bellomo R, Hegarty C et al (2012) Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA 308:1566–1572. doi: 10.1001/jama.2012.13356 CrossRefPubMedGoogle Scholar
  46. 46.
    Bayer O, Reinhart K, Sakr Y et al (2011) Renal effects of synthetic colloids and crystalloids in patients with severe sepsis: a prospective sequential comparison. Crit Care Med 39:1335–1342. doi: 10.1097/CCM.0b013e318212096a CrossRefPubMedGoogle Scholar
  47. 47.
    Yunos NM, Bellomo R, Glassford N et al (2015) Chloride-liberal vs. chloride-restrictive intravenous fluid administration and acute kidney injury: an extended analysis. Intensive Care Med 41:257–264. doi: 10.1007/s00134-014-3593-0 CrossRefPubMedGoogle Scholar
  48. 48.
    Raghunathan K, Shaw A, Nathanson B et al (2014) Association between the choice of IV crystalloid and in-hospital mortality among critically ill adults with sepsis. Crit Care Med 42:1585–1591. doi: 10.1097/CCM.0000000000000305 CrossRefPubMedGoogle Scholar
  49. 49.
    Shaw AD, Schermer CR, Lobo DN et al (2015) Impact of intravenous fluid composition on outcomes in patients with systemic inflammatory response syndrome. Crit Care 19:334. doi: 10.1186/s13054-015-1045-z CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Young P, Bailey M, Beasley R et al (2015) Effect of a buffered crystalloid solution vs saline on acute kidney injury among patients in the intensive care unit: the SPLIT randomized clinical trial. JAMA 314:1701–1710. doi: 10.1001/jama.2015.12334 CrossRefPubMedGoogle Scholar
  51. 51.
    Semler MW, Wanderer JP, Ehrenfeld JM et al (2016) Balanced crystalloids versus saline in the intensive care unit: the SALT randomized trial. Am J Respir Crit Care Med. doi: 10.1164/rccm.201607-1345OC Google Scholar
  52. 52.
    Sen A, Keener CM, Sileanu FE et al (2017) Chloride content of fluids used for large-volume resuscitation is associated with reduced survival. Crit Care Med 45:e146–e153. doi: 10.1097/CCM.0000000000002063 CrossRefPubMedGoogle Scholar
  53. 53.
    Rivers E, Nguyen B, Havstad S et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377. doi: 10.1056/NEJMoa010307 CrossRefPubMedGoogle Scholar
  54. 54.
    Pettilä V, Bellomo R (2014) Understanding acute kidney injury in sepsis. Intensive Care Med 40:1018–1020. doi: 10.1007/s00134-014-3313-9 CrossRefPubMedGoogle Scholar
  55. 55.
    Chen KP, Cavender S, Lee J et al (2016) Peripheral edema, central venous pressure, and risk of AKI in critical illness. Clin J Am Soc Nephrol CJASN 11:602–608. doi: 10.2215/CJN.08080715 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Bihari S, Baldwin CE, Bersten AD (2013) Fluid balance does not predict estimated sodium balance in critically ill mechanically ventilated patients. Crit Care Resusc 15:89–96PubMedGoogle Scholar
  57. 57.
    Glassford NJ, Mårtensson J, Eastwood GM et al (2016) Defining the characteristics and expectations of fluid bolus therapy: a worldwide perspective. J Crit Care 35:126–132. doi: 10.1016/j.jcrc.2016.05.017 CrossRefPubMedGoogle Scholar
  58. 58.
    Hjortrup PB, Haase N, Bundgaard H et al (2016) Restricting volumes of resuscitation fluid in adults with septic shock after initial management: the CLASSIC randomised, parallel-group, multicentre feasibility trial. Intensive Care Med 42:1695–1705. doi: 10.1007/s00134-016-4500-7 CrossRefPubMedGoogle Scholar
  59. 59.
    Silversides JA, Major E, Ferguson AJ et al (2016) Conservative fluid management or deresuscitation for patients with sepsis or acute respiratory distress syndrome following the resuscitation phase of critical illness: a systematic review and meta-analysis. Intensive Care Med. doi: 10.1007/s00134-016-4573-3 PubMedGoogle Scholar
  60. 60.
    Investigators ProCESS, Yealy DM, Kellum JA et al (2014) A randomized trial of protocol-based care for early septic shock. N Engl J Med 370:1683–1693. doi: 10.1056/NEJMoa1401602 CrossRefGoogle Scholar
  61. 61.
    Teixeira C, Garzotto F, Piccinni P et al (2013) Fluid balance and urine volume are independent predictors of mortality in acute kidney injury. Crit Care 17:R14. doi: 10.1186/cc12484 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Vaara ST, Korhonen A-M, Kaukonen K-M et al (2012) Fluid overload is associated with an increased risk for 90-day mortality in critically ill patients with renal replacement therapy: data from the prospective FINNAKI study. Crit Care 16:R197. doi: 10.1186/cc11682 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Rosner MH, Ostermann M, Murugan R et al (2014) Indications and management of mechanical fluid removal in critical illness. Br J Anaesth 113:764–771. doi: 10.1093/bja/aeu297 CrossRefPubMedGoogle Scholar
  64. 64.
    Prowle JR, Kirwan CJ, Bellomo R (2014) Fluid management for the prevention and attenuation of acute kidney injury. Nat Rev Nephrol 10:37–47. doi: 10.1038/nrneph.2013.232 CrossRefPubMedGoogle Scholar
  65. 65.
    Ho KM, Sheridan DJ (2006) Meta-analysis of frusemide to prevent or treat acute renal failure. BMJ 333:420. doi: 10.1136/bmj.38902.605347.7C CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Mehta RL, Pascual MT, Soroko S et al (2002) Diuretics, mortality, and nonrecovery of renal function in acute renal failure. JAMA 288:2547–2553CrossRefPubMedGoogle Scholar
  67. 67.
    Uchino S, Doig GS, Bellomo R et al (2004) Diuretics and mortality in acute renal failure. Crit Care Med 32:1669–1677CrossRefPubMedGoogle Scholar
  68. 68.
    Goldstein S, Bagshaw S, Cecconi M et al (2014) Pharmacological management of fluid overload. Br J Anaesth 113:756–763. doi: 10.1093/bja/aeu299 CrossRefPubMedGoogle Scholar
  69. 69.
    Schneider AG, Baldwin I, Freitag E et al (2012) Estimation of fluid status changes in critically ill patients: fluid balance chart or electronic bed weight? J Crit Care 27:745.e7–745.e12. doi: 10.1016/j.jcrc.2011.12.017 CrossRefGoogle Scholar
  70. 70.
    Uszko-Lencer NHMK, Bothmer F, van Pol PEJ, Schols AMWJ (2006) Measuring body composition in chronic heart failure: a comparison of methods. Eur J Heart Fail 8:208–214. doi: 10.1016/j.ejheart.2005.07.007 CrossRefPubMedGoogle Scholar
  71. 71.
    Chen H, Wu B, Gong D, Liu Z (2015) Fluid overload at start of continuous renal replacement therapy is associated with poorer clinical condition and outcome: a prospective observational study on the combined use of bioimpedance vector analysis and serum N-terminal pro-B-type natriuretic peptide measurement. Crit Care 19:135. doi: 10.1186/s13054-015-0871-3 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Jones SL, Tanaka A, Eastwood GM et al (2015) Bioelectrical impedance vector analysis in critically ill patients: a prospective, clinician-blinded investigation. Crit Care 19:290. doi: 10.1186/s13054-015-1009-3 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Mikkelsen ME, Christie JD, Lanken PN et al (2012) The adult respiratory distress syndrome cognitive outcomes study: long-term neuropsychological function in survivors of acute lung injury. Am J Respir Crit Care Med 185:1307–1315. doi: 10.1164/rccm.201111-2025OC CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Grissom CK, Hirshberg EL, Dickerson JB et al (2015) Fluid management with a simplified conservative protocol for the acute respiratory distress syndrome. Crit Care Med 43:288–295. doi: 10.1097/CCM.0000000000000715 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Boulain T, Boisrame-Helms J, Ehrmann S et al (2015) Volume expansion in the first 4 days of shock: a prospective multicentre study in 19 French intensive care units. Intensive Care Med 41:248–256. doi: 10.1007/s00134-014-3576-1 CrossRefPubMedGoogle Scholar
  76. 76.
    Hjortrup PB, Haase N, Wetterslev J et al (2017) Effects of fluid restriction on measures of circulatory efficacy in adults with septic shock. Acta Anaesthesiol Scand. doi: 10.1111/aas.12862 Google Scholar
  77. 77.
    Guidet B, Martinet O, Boulain T, Philippart F, Poussel J, Maizel J, Forceville X, Feissel M, Hasselmann M, Heininger A, Aken HV (2012) Assessment of hemodynamic efficacy and safety of 6% hydroxyethylstarch 130/0.4 vs. 0.9% NaCl fluid replacement in patients with severe sepsis: the CRYSTMAS study. Critical Care 16(3):R94CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and ESICM 2017

Authors and Affiliations

  1. 1.Department of Intensive Care, RigshospitaletUniversity of CopenhagenCopenhagenDenmark
  2. 2.Adult Critical Care Unit, The Royal London Hospital, Barts Health NHS Trust, William Harvey Research InstituteQueen Mary University of LondonLondonUK
  3. 3.Division of Intensive Care and Emergency MedicineMedical University InnsbruckInnsbruckAustria
  4. 4.Intensive Care Unit, Medical Research Institute of New ZealandWellington HospitalWellingtonNew Zealand
  5. 5.Division of Intensive Care Medicine, Department of Anesthesiology, Intensive Care and Pain MedicineUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland

Personalised recommendations