Intensive Care Medicine

, Volume 43, Issue 9, pp 1282–1293 | Cite as

Intensive care medicine research agenda on cardiac arrest

  • Jerry P. Nolan
  • Robert A. Berg
  • Stephen Bernard
  • Bentley J. Bobrow
  • Clifton W. Callaway
  • Tobias Cronberg
  • Rudolph W. Koster
  • Peter J. Kudenchuk
  • Graham Nichol
  • Gavin D. Perkins
  • Tom D. Rea
  • Claudio Sandroni
  • Jasmeet Soar
  • Kjetil Sunde
  • Alain Cariou
Research Agenda

Abstract

Over the last 15 years, treatment of comatose post-cardiac arrest patients has evolved to include therapeutic strategies such as urgent coronary angiography with percutaneous coronary intervention (PCI), targeted temperature management (TTM)—requiring mechanical ventilation and sedation—and more sophisticated and cautious prognostication. In 2015, collaboration between the European Resuscitation Council (ERC) and the European Society for Intensive Care Medicine (ESICM) resulted in the first European guidelines on post-resuscitation care. This review addresses the major recent advances in the treatment of cardiac arrest, recent trials that have challenged current practice and the remaining areas of uncertainty.

Keywords

Cardiopulmonary resuscitation Cardiac arrest Basic life support Advanced life support Post-resuscitation care Prognostication 

Notes

Compliance with ethical standards

Conflicts of interest

JPN: Editor-in-Chief, Resuscitation; funding from the National Institute for Health Research to evaluate interventions in cardiac arrest including airway management (AIRWAYS-2 study) and adrenaline (PARAMEDIC-2 study). RAB: None declared SB: National Health and Medical Research Grants to undertake clinical trials in controlled oxygenation and mild hypercarbia after cardiac arrest. BJB: None declared. CC: None declared. TC: Co-investigator TTM trial; senior investigator TTM-2 trial. RWK: Research grants for studies on AED use from Physio-Control, Philips Medical, Zoll Medical, Cardiac Science, Defibtech. Advisor (unpaid) for Physio-Control and HeartSine. PJK: PI for the NIH-supported Resuscitation Outcomes Consortium, University of Washington. GN: None declared. GDP: Funding from the National Institute for Health Research to evaluate interventions in cardiac arrest including mechanical CPR and adrenaline (PARAMEDIC-2 study). TDR: None declared. CS: None declared. JS: None declared. KS: Speakers fees and travel grants from Bard Medical. AC: Speakers fees and travel grants from Bard Medical.

References

  1. 1.
    Monsieurs KG, Nolan JP, Bossaert LL et al (2015) European Resuscitation Council guidelines for resuscitation 2015: section 1. Executive summary. Resuscitation 95:1–80CrossRefPubMedGoogle Scholar
  2. 2.
    Neumar RW, Shuster M, Callaway CW et al (2015) Part 1: executive summary: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 132:S315–S367CrossRefPubMedGoogle Scholar
  3. 3.
    Nolan JP, Hazinski MF, Aickin R et al (2015) Part 1: executive summary: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Resuscitation 95:e1–e31CrossRefPubMedGoogle Scholar
  4. 4.
    Nolan JP, Soar J, Cariou A et al (2015) European Resuscitation Council and European Society of Intensive Care Medicine 2015 guidelines for post-resuscitation care. Intensive Care Med 41:2039–2056CrossRefPubMedGoogle Scholar
  5. 5.
    Bobrow BJ, Zuercher M, Ewy GA et al (2008) Gasping during cardiac arrest in humans is frequent and associated with improved survival. Circulation 118:2550–2554CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    White L, Rogers J, Bloomingdale M et al (2010) Dispatcher-assisted cardiopulmonary resuscitation: risks for patients not in cardiac arrest. Circulation 121:91–97CrossRefPubMedGoogle Scholar
  7. 7.
    Lewis M, Stubbs BA, Eisenberg MS (2013) Dispatcher-assisted cardiopulmonary resuscitation: time to identify cardiac arrest and deliver chest compression instructions. Circulation 128:1522–1530CrossRefPubMedGoogle Scholar
  8. 8.
    Ro YS, Shin SD, Lee YJ et al (2016) Effect of dispatcher-assisted cardiopulmonary resuscitation program and location of out-of-hospital cardiac arrest on survival and neurologic outcome. Ann Emerg Med 69:52–61.e1CrossRefPubMedGoogle Scholar
  9. 9.
    Bobrow BJ, Spaite DW, Vadeboncoeur TF et al (2016) Implementation of a regional telephone cardiopulmonary resuscitation program and outcomes after out-of-hospital cardiac arrest. JAMA Cardiol 1:294–302CrossRefPubMedGoogle Scholar
  10. 10.
    Nichol G, Cobb LA, Yin L et al (2016) Briefer activation time is associated with better outcomes after out-of-hospital cardiac arrest. Resuscitation 107:139–144CrossRefPubMedGoogle Scholar
  11. 11.
    Cheskes S, Schmicker RH, Verbeek PR et al (2014) The impact of peri-shock pause on survival from out-of-hospital shockable cardiac arrest during the Resuscitation Outcomes Consortium PRIMED trial. Resuscitation 85:336–342CrossRefPubMedGoogle Scholar
  12. 12.
    Stiell IG, Brown SP, Nichol G et al (2014) What is the optimal chest compression depth during out-of-hospital cardiac arrest resuscitation of adult patients? Circulation 130:1962–1970CrossRefPubMedGoogle Scholar
  13. 13.
    Idris AH, Guffey D, Pepe PE et al (2015) Chest compression rates and survival following out-of-hospital cardiac arrest. Crit Care Med 43:840–848CrossRefPubMedGoogle Scholar
  14. 14.
    Christenson J, Andrusiek D, Everson-Stewart S et al (2009) Chest compression fraction determines survival in patients with out-of-hospital ventricular fibrillation. Circulation 120:1241–1247CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Vaillancourt C, Everson-Stewart S, Christenson J et al (2011) The impact of increased chest compression fraction on return of spontaneous circulation for out-of-hospital cardiac arrest patients not in ventricular fibrillation. Resuscitation 82:1501–1507CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kitamura T, Kiyohara K, Sakai T et al (2016) Public-access defibrillation and out-of-hospital cardiac arrest in Japan. N Engl J Med 375:1649–1659CrossRefPubMedGoogle Scholar
  17. 17.
    Zijlstra JA, Stieglis R, Riedijk F, Smeekes M, van der Worp WE, Koster RW (2014) Local lay rescuers with AEDs, alerted by text messages, contribute to early defibrillation in a Dutch out-of-hospital cardiac arrest dispatch system. Resuscitation 85:1444–1449CrossRefPubMedGoogle Scholar
  18. 18.
    Ringh M, Rosenqvist M, Hollenberg J et al (2015) Mobile-phone dispatch of laypersons for CPR in out-of-hospital cardiac arrest. N Engl J Med 372:2316–2325CrossRefPubMedGoogle Scholar
  19. 19.
    Hansen CM, Wissenberg M, Weeke P et al (2013) Automated external defibrillators inaccessible to more than half of nearby cardiac arrests in public locations during evening, nighttime, and weekends. Circulation 128:2224–2231CrossRefPubMedGoogle Scholar
  20. 20.
    Finn JC, Bhanji F, Lockey A et al (2015) Part 8: Education, implementation, and teams: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Resuscitation 95:e203–e224CrossRefPubMedGoogle Scholar
  21. 21.
    Perman SM, Stanton E, Soar J et al (2016) Location of in-hospital cardiac arrest in the United States—variability in event rate and outcomes. J Am Heart Assoc 5:e003638CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Alam N, Hobbelink EL, van Tienhoven AJ, van de Ven PM, Jansma EP, Nanayakkara PW (2014) The impact of the use of the Early Warning Score (EWS) on patient outcomes: a systematic review. Resuscitation 85:587–594CrossRefPubMedGoogle Scholar
  23. 23.
    Bannard-Smith J, Lighthall GK, Subbe CP et al (2016) Clinical outcomes of patients seen by rapid response teams: a template for benchmarking international teams. Resuscitation 107:7–12CrossRefPubMedGoogle Scholar
  24. 24.
    Stiell IG, Brown SP, Christenson J et al (2012) What is the role of chest compression depth during out-of-hospital cardiac arrest resuscitation? Crit Care Med 40:1192–1198CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Meaney PA, Bobrow BJ, Mancini ME et al (2013) Cardiopulmonary resuscitation quality: improving cardiac resuscitation outcomes both inside and outside the hospital: a consensus statement from the american heart association. Circulation 128:417–435CrossRefPubMedGoogle Scholar
  26. 26.
    Nolan JP, Neumar RW, Adrie C et al (2008) Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. A Scientific Statement from the International Liaison Committee on Resuscitation; the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; the Council on Stroke. Resuscitation 79:350–379CrossRefPubMedGoogle Scholar
  27. 27.
    Sunde K, Pytte M, Jacobsen D et al (2007) Implementation of a standardised treatment protocol for post resuscitation care after out-of-hospital cardiac arrest. Resuscitation 73:29–39CrossRefPubMedGoogle Scholar
  28. 28.
    Stub D, Schmicker RH, Anderson ML et al (2015) Association between hospital post-resuscitative performance and clinical outcomes after out-of-hospital cardiac arrest. Resuscitation 92:45–52CrossRefPubMedGoogle Scholar
  29. 29.
    Gates S, Quinn T, Deakin CD, Blair L, Couper K, Perkins GD (2015) Mechanical chest compression for out of hospital cardiac arrest: systematic review and meta-analysis. Resuscitation 94:91–97CrossRefPubMedGoogle Scholar
  30. 30.
    Couper K, Yeung J, Nicholson T, Quinn T, Lall R, Perkins GD (2016) Mechanical chest compression devices at in-hospital cardiac arrest: a systematic review and meta-analysis. Resuscitation 103:24–31CrossRefPubMedGoogle Scholar
  31. 31.
    Sanfilippo F, Corredor C, Santonocito C et al (2016) Amiodarone or lidocaine for cardiac arrest: a systematic review and meta-analysis. Resuscitation 107:31–37CrossRefPubMedGoogle Scholar
  32. 32.
    Kudenchuk PJ, Brown SP, Daya M et al (2016) Amiodarone, lidocaine, or placebo in out-of-hospital cardiac arrest. N Engl J Med 374:1711–1722CrossRefPubMedGoogle Scholar
  33. 33.
    Kudenchuk PJ (2016) Antiarrhythmic drugs in out-of-hospital cardiac arrest: what counts and what doesn’t? Resuscitation 109:A5–A7CrossRefPubMedGoogle Scholar
  34. 34.
    Argaud L, Cour M, Dubien PY et al (2016) Effect of cyclosporine in nonshockable out-of-hospital cardiac arrest: the CYRUS randomized clinical trial. JAMA Cardiol 1:557–565CrossRefPubMedGoogle Scholar
  35. 35.
    Wiberg S, Hassager C, Thomsen JH et al (2016) GLP-1 analogues for neuroprotection after out-of-hospital cardiac arrest: study protocol for a randomized controlled trial. Trials 17:304CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Cariou A, Deye N, Vivien B et al (2016) Early high-dose erythropoietin therapy after out-of-hospital cardiac arrest: a multicenter, randomized controlled trial. J Am Coll Cardiol 68:40–49CrossRefPubMedGoogle Scholar
  37. 37.
    Nielsen N, Wetterslev J, Cronberg T et al (2013) Targeted temperature management at 33 degrees C versus 36 degrees C after cardiac arrest. N Engl J Med 369:2197–2206CrossRefPubMedGoogle Scholar
  38. 38.
    Nolan JP, Cariou A (2015) Post-resuscitation care: eRC-ESICM guidelines 2015. Intensive Care Med 41:2204–2206CrossRefPubMedGoogle Scholar
  39. 39.
    Lasa JJ, Rogers RS, Localio R et al (2016) Extracorporeal-cardiopulmonary resuscitation (E-CPR) during pediatric in-hospital cardiopulmonary arrest is associated with improved survival to discharge: a report from the American Heart Association’s Get With The Guidelines-Resuscitation (GWTG-R) Registry. Circulation 133:165–176CrossRefPubMedGoogle Scholar
  40. 40.
    Chen YS, Lin JW, Yu HY et al (2008) Cardiopulmonary resuscitation with assisted extracorporeal life-support versus conventional cardiopulmonary resuscitation in adults with in-hospital cardiac arrest: an observational study and propensity analysis. Lancet 372:554–561CrossRefPubMedGoogle Scholar
  41. 41.
    Goldberger ZD, Chan PS, Berg RA et al (2012) Duration of resuscitation efforts and survival after in-hospital cardiac arrest: an observational study. Lancet 380:1473–1481CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Lin JW, Wang MJ, Yu HY et al (2010) Comparing the survival between extracorporeal rescue and conventional resuscitation in adult in-hospital cardiac arrests: propensity analysis of three-year data. Resuscitation 81:796–803CrossRefPubMedGoogle Scholar
  43. 43.
    Soar J, Nolan JP (2013) Airway management in cardiopulmonary resuscitation. Curr Opin Crit Care 19:181–187CrossRefPubMedGoogle Scholar
  44. 44.
    Kurz MC, Prince DK, Christenson J et al (2016) Association of advanced airway device with chest compression fraction during out-of-hospital cardiopulmonary arrest. Resuscitation 98:35–40CrossRefPubMedGoogle Scholar
  45. 45.
    Wang HE, Prince DK, Stephens SW et al (2016) Design and implementation of the resuscitation outcomes consortium pragmatic airway resuscitation trial (PART). Resuscitation 101:57–64CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Taylor J, Black S, Brett SJ et al (2016) Design and implementation of the AIRWAYS-2 trial: a multi-centre cluster randomised controlled trial of the clinical and cost effectiveness of the i-gel supraglottic airway device versus tracheal intubation in the initial airway management of out of hospital cardiac arrest. Resuscitation 109:25–32CrossRefPubMedGoogle Scholar
  47. 47.
    Nichol G, Leroux B, Wang H et al (2015) Trial of continuous or interrupted chest compressions during CPR. N Engl J Med 373:2203–2214CrossRefPubMedGoogle Scholar
  48. 48.
    Jacobs IG, Finn JC, Jelinek GA, Oxer HF, Thompson PL (2011) Effect of adrenaline on survival in out-of-hospital cardiac arrest: a randomised double-blind placebo-controlled trial. Resuscitation 82:1138–1143CrossRefPubMedGoogle Scholar
  49. 49.
    Loomba RS, Nijhawan K, Aggarwal S, Arora RR (2015) Increased return of spontaneous circulation at the expense of neurologic outcomes: is prehospital epinephrine for out-of-hospital cardiac arrest really worth it? J Crit Care 30:1376–1381CrossRefPubMedGoogle Scholar
  50. 50.
    Perkins GD, Quinn T, Deakin CD et al (2016) Pre-hospital assessment of the role of adrenaline: measuring the effectiveness of drug administration in cardiac arrest (PARAMEDIC-2): trial protocol. Resuscitation 108:75–81CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Pilcher J, Weatherall M, Shirtcliffe P, Bellomo R, Young P, Beasley R (2012) The effect of hyperoxia following cardiac arrest—a systematic review and meta-analysis of animal trials. Resuscitation 83:417–422CrossRefPubMedGoogle Scholar
  52. 52.
    Stub D, Smith K, Bernard S et al (2015) Air versus oxygen in ST-segment-elevation myocardial infarction. Circulation 131:2143–2150CrossRefPubMedGoogle Scholar
  53. 53.
    Kilgannon JH, Jones AE, Shapiro NI et al (2010) Association between arterial hyperoxia following resuscitation from cardiac arrest and in-hospital mortality. JAMA 303:2165–2171CrossRefPubMedGoogle Scholar
  54. 54.
    Bellomo R, Bailey M, Eastwood GM et al (2011) Arterial hyperoxia and in-hospital mortality after resuscitation from cardiac arrest. Crit Care 15:R90CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Kuisma M, Boyd J, Voipio V, Alaspaa A, Roine RO, Rosenberg P (2006) Comparison of 30 and the 100% inspired oxygen concentrations during early post-resuscitation period: a randomised controlled pilot study. Resuscitation 69:199–206CrossRefPubMedGoogle Scholar
  56. 56.
    Young P, Bailey M, Bellomo R et al (2014) HyperOxic Therapy OR NormOxic Therapy after out-of-hospital cardiac arrest (HOT OR NOT): a randomised controlled feasibility trial. Resuscitation 85:1686–1691CrossRefPubMedGoogle Scholar
  57. 57.
    Bouzat P, Suys T, Sala N, Oddo M (2013) Effect of moderate hyperventilation and induced hypertension on cerebral tissue oxygenation after cardiac arrest and therapeutic hypothermia. Resuscitation 84:1540–1545CrossRefPubMedGoogle Scholar
  58. 58.
    Eastwood GM, Schneider AG, Suzuki S et al (2016) Targeted therapeutic mild hypercapnia after cardiac arrest: a phase II multi-centre randomised controlled trial (the CCC trial). Resuscitation 104:83–90CrossRefPubMedGoogle Scholar
  59. 59.
    Kim F, Nichol G, Maynard C et al (2014) Effect of prehospital induction of mild hypothermia on survival and neurological status among adults with cardiac arrest: a randomized clinical trial. JAMA 311:45–52CrossRefPubMedGoogle Scholar
  60. 60.
    Millin MG, Comer AC, Nable JV et al (2016) Patients without ST elevation after return of spontaneous circulation may benefit from emergent percutaneous intervention: a systematic review and meta-analysis. Resuscitation 108:54–60CrossRefPubMedGoogle Scholar
  61. 61.
    Dankiewicz J, Nielsen N, Annborn M et al (2015) Survival in patients without acute ST elevation after cardiac arrest and association with early coronary angiography: a post hoc analysis from the TTM trial. Intensive Care Med 41:856–864CrossRefPubMedGoogle Scholar
  62. 62.
    Dumas F, Bougouin W, Geri G et al (2016) Emergency percutaneous coronary intervention in post-cardiac arrest patients without st-segment elevation pattern: insights from the PROCAT II registry. JACC Cardiovasc Interv 9:1011–1018CrossRefPubMedGoogle Scholar
  63. 63.
    Shah N, Chaudhary R, Mehta K et al (2016) Therapeutic hypothermia and stent thrombosis: a nationwide analysis. JACC Cardiovasc Interv 9:1801–1811CrossRefPubMedGoogle Scholar
  64. 64.
    Laitio R, Hynninen M, Arola O et al (2016) Effect of inhaled xenon on cerebral white matter damage in comatose survivors of out-of-hospital cardiac arrest: a randomized clinical trial. JAMA 315:1120–1128CrossRefPubMedGoogle Scholar
  65. 65.
    Sandroni C, Cariou A, Cavallaro F et al (2014) Prognostication in comatose survivors of cardiac arrest: an advisory statement from the European Resuscitation Council and the European Society of Intensive Care Medicine. Intensive Care Med 40:1816–1831CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Seder DB, Sunde K, Rubertsson S et al (2015) Neurologic outcomes and postresuscitation care of patients with myoclonus following cardiac arrest. Crit Care Med 43:965–972CrossRefPubMedGoogle Scholar
  67. 67.
    Westhall E, Rosen I, Rossetti AO et al (2015) Interrater variability of EEG interpretation in comatose cardiac arrest patients. Clin Neurophysiol 126:2397–2404CrossRefPubMedGoogle Scholar
  68. 68.
    Hirsch LJ, LaRoche SM, Gaspard N et al (2013) American Clinical Neurophysiology Society’s standardized critical care EEG terminology: 2012 version. J Clin Neurophysiol 30:1–27CrossRefPubMedGoogle Scholar
  69. 69.
    Paul M, Bougouin W, Geri G et al (2016) Delayed awakening after cardiac arrest: prevalence and risk factors in the Parisian registry. Intensive Care Med 42:1128–1136CrossRefPubMedGoogle Scholar
  70. 70.
    Moulaert VR, van Heugten CM, Winkens B et al (2015) Early neurologically-focused follow-up after cardiac arrest improves quality of life at one year: a randomised controlled trial. Int J Cardiol 193:8–16CrossRefPubMedGoogle Scholar
  71. 71.
    Lilja G, Nielsen N, Friberg H et al (2015) Cognitive function in survivors of out-of-hospital cardiac arrest after target temperature management at 33 degrees C versus 36 degrees C. Circulation 131:1340–1349CrossRefPubMedGoogle Scholar
  72. 72.
    Andersson AE, Rosen H, Sunnerhagen KS (2015) Life after cardiac arrest: a very long term follow up. Resuscitation 91:99–103CrossRefPubMedGoogle Scholar
  73. 73.
    Weisfeldt ML (2016) Stop randomizing all cardiac arrests. Circulation 134:2035–2036CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and ESICM 2017

Authors and Affiliations

  • Jerry P. Nolan
    • 1
    • 2
  • Robert A. Berg
    • 3
    • 4
  • Stephen Bernard
    • 5
  • Bentley J. Bobrow
    • 6
  • Clifton W. Callaway
    • 7
  • Tobias Cronberg
    • 8
  • Rudolph W. Koster
    • 9
  • Peter J. Kudenchuk
    • 10
  • Graham Nichol
    • 11
  • Gavin D. Perkins
    • 12
  • Tom D. Rea
    • 13
  • Claudio Sandroni
    • 14
  • Jasmeet Soar
    • 15
  • Kjetil Sunde
    • 16
    • 17
  • Alain Cariou
    • 18
  1. 1.School of Clinical SciencesUniversity of BristolBristolUK
  2. 2.Anaesthesia and Intensive Care MedicineRoyal United HospitalBathUK
  3. 3.Pediatric Critical Care Medicine, Russell Raphaely Endowed Chair of Critical Care MedicineThe Children’s Hospital of PhiladelphiaPhiladelphiaUSA
  4. 4.Anesthesiology and Critical Care Medicine, Perelman School of MedicineThe University of PennsylvaniaPhiladelphiaUSA
  5. 5.Ambulance VictoriaVictoriaAustralia
  6. 6.Department of Emergency MedicineUniversity of Arizona College of MedicineTucsonUSA
  7. 7.Department of Emergency MedicineUniversity of Pittsburgh School of MedicinePittsburghUSA
  8. 8.Department of Clinical Sciences Lund, NeurologySkane University Hospital, Lund UniversityLundSweden
  9. 9.Department of CardiologyAcademic Medical CenterAmsterdamThe Netherlands
  10. 10.Division of Cardiology, Department of MedicineUniversity of WashingtonSeattleUSA
  11. 11.University of Washington-Harborview Center for Prehospital Emergency CareUniversity of WashingtonSeattleUSA
  12. 12.Critical Care Medicine, Warwick Medical School and Heart of England NHS Foundation TrustUniversity of WarwickCoventryUK
  13. 13.University of WashingtonSeattleUSA
  14. 14.Department of Anaesthesiology and Intensive CareCatholic University School of MedicineRomeItaly
  15. 15.Anaesthesia and Intensive Care Medicine, North Bristol NHS TrustSouthmead HospitalBristolUK
  16. 16.Department of Anaesthesiology, Division of Emergencies and Critical CareOslo University HospitalOsloNorway
  17. 17.Institute of Clinical MedicineUniversity of OsloOsloNorway
  18. 18.Medical ICU, Cochin Hospital (AP-HP), Paris-Cardiovascular-Research-Centre, INSERM U970 (Sudden Death Expertize Centre)Université Paris-Descartes-Sorbonne-Paris-CitéParisFrance

Personalised recommendations