Intensive Care Medicine

, Volume 43, Issue 9, pp 1257–1269 | Cite as

The ICM research agenda on critical care ultrasonography

  • P. MayoEmail author
  • R. Arntfield
  • M. Balik
  • P. Kory
  • G. Mathis
  • G. Schmidt
  • M. Slama
  • G. Volpicelli
  • N. Xirouchaki
  • A. McLean
  • A. Vieillard-Baron
Research Agenda



Critical care ultrasonography has utility for the diagnosis and management of critical illness and is in widespread use by frontline intensivists. As there is a need for research to validate and extend its utility, the Editor of Intensive Care Medicine included critical care ultrasonography as a topic in the ICM Research Agenda issue.


Eleven international experts in the field of critical care ultrasonography contributed to the writing project. With the intention of developing a research agenda for the field, they reviewed best standards of care, new advances in the field, common beliefs that have been contradicted by recent trials, and unanswered questions related to critical care ultrasonography.


The writing group focused on the provision of training in critical care ultrasonography, technological advances, and some specific clinical applications.


The writing group identified several fields of interest for research and proposed ten research studies that would address important aspects of critical care ultrasonography.


Ultrasonography Transesophageal Echocardiography Research Training 


Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest for this article.

Supplementary material

Video 1: Severe acute cor pulmonale by TTE in a patient ventilated for ARDS. The apical 4-chamber view demonstrates a major dilatation of the right ventricle; the short axis view demonstrates a paradoxical septal motion. The left ventricle is hyperkinetic (MPG 4150 kb)

134_2017_4734_MOESM2_ESM.wmv (328 kb)
Video 2: Image taken with a 3.5 MHz ultrasonography probe orientated perpendicular to the chest wall with the tomographic plane adjusted to examine through the rib interspace. Lung sliding is present, indicating that the visceral and parietal pleura are apposed at the site of the examination i.e. there is no pneumothorax (WMV 328 kb)
134_2017_4734_MOESM3_ESM.mp4 (5.4 mb)
Video 3: Session of tele-medicine using the REACTS® platform (Innovative Imaging Technologies, Montreal, Canada) between Paris (Dr Vieillard-Baron, upper) and Montreal (Dr Beaulieu, lower part). Dr Beaulieu is performing an ultrasonography evaluation of his left internal jugular vein, also using color-Doppler. This is visualized and interpreted by Dr Vieillard-Baron in Paris with real-time transmission of the video and audio data (MP4 5521 kb)
134_2017_4734_MOESM4_ESM.wmv (580 kb)
Video 4: Another session of tele-medicine using the REACTS® platform. A TEE is performed in Paris (lower and right corner) visualizing the upper and right pulmonary vein with a recording of the pulmonary venous flow by color Doppler and pulsed wave Doppler. The examination is interpreted real-time in Montreal (Dr Beaulieu, upper and right corner) (WMV 580 kb)

Video 5: Long axis view of the superior vena cava from the upper esophageal view combining 2D-imaging (right image) and time-motion study (left image) in a patient in shock under volume-controlled ventilation with hypovolemia. There is collapse of the vessel during tidal ventilation, indicating a high probability of fluid responsiveness. The airway pressure trace is visualized in green on the screen of the echo machineb (MPG 1889 kb)

Video 6: Long axis view of the inferior vena cava from the subcostal view using transthoracic echocardiography combining 2D-imaging (lower image) and time-motion study (upper image) in a patient in shock under volume-controlled ventilation with hypovolemia. There is significant dilatation of the vessel during tidal ventilation, suggesting fluid-responsiveness. The airway pressure trace is visualized in white on the screen of the echo machine (MPG 2596 kb)


  1. 1.
    Expert Round Table on Ultrasound in ICU (2011) International expert statement for critical care ultrasonography. Intensive Care Med 37:1077–1083CrossRefGoogle Scholar
  2. 2.
    Charron C, Prat G, Caille V, Belliard G, Lefevre M, Aegerter P, Boles JM, Jardin F, Vieillard-Baron A (2007) Validation of a skills assessment scoring system for transesophageal echocardiographic monitoring of hemodynamics. Intensive Care Med 33:1712–1718CrossRefPubMedGoogle Scholar
  3. 3.
    Charron C, Vignon P, Prat G, Tonnelier A, Aegerter P, Boles JM, Amiel JB, Vieillard-Baron A (2013) Number of supervised studies required to reach competence in advanced critical care transesophageal echocardiography. Intensive Care Med 39:1019–1024CrossRefPubMedGoogle Scholar
  4. 4.
    Prat G, Charron C, Repesse X, Coriat P, Bailly P, L’her E, Vieillard-Baron A (2016) The use of computerized echocardiographic simulation improves the learning curve for transesophageal hemodynamic assessment in critically ill patients. Ann Intensive Care 6:27CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Fletcher N, Geisen M, Meeran H, Spray D, Cecconi M (2015) Initial clinical experience with a miniaturized transesophageal echocardiography probe in a cardiac intensive care unit. J Cardiothorac Vasc Anesth 29:582–587CrossRefPubMedGoogle Scholar
  6. 6.
    Arntfield R, Pace J, Mclead S, Granton J, Hegazy A, Lingard L (2015) Focused transesophageal echocardiography for emergency physicians—descriptions and results from simulation training of a structured four-view examination. Crit Ultrasound J 7:10CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Blaivas M (2008) Transesophageal echocardiography during cardiopulmonary arrest in the emergency department. Resuscitation 78:135–140CrossRefPubMedGoogle Scholar
  8. 8.
    Benjamin E, Griffin K, Leibowitz AB, Manasia A, Oropello JM, Geffroy V, Delguidice R, Hufanda J, Rosen S, Goldman M (1998) Goal-directed transesophageal echocardiography performed by intensivists to assess left ventricular function: comparison with pulmonary artery catheterization. J Cardiothorac Vasc Anesth 12:10–15CrossRefPubMedGoogle Scholar
  9. 9.
    Arntfield RT, Millington SJ, Ainsworth CD, Arora RC, Boyd J, Finlayson G, Gallagher W, Gebhardt C, Goffi A, Hockmann E, Kirkpatrick AW (2014) Canadian recommendations for critical care ultrasound training and competency. Can Respir J 21:341–345CrossRefPubMedCentralGoogle Scholar
  10. 10.
    McLean AS (2011) International recommendations on competency in critical care ultrasound: pertinence to Australia and New Zealand. Crit Care Resusc 13:56PubMedGoogle Scholar
  11. 11.
    Mayo PH, Beaulieu Y, Doelken P, Feller-Kopman D, Harrod C, Kaplan A, Oropello J, Vieillard-Baron A, Axler O, Lichtenstein D, American Maury E, College of Chest Physicians/La Societe de Reanimation de Langue Francaise (2009) Statement on competence in critical care ultrasonography. Chest 135:1050–1060CrossRefPubMedGoogle Scholar
  12. 12.
    Millington SJ, Arntfield RT, Hewak M, Hamstra SJ, Beaulieu Y, Hibbert B, Koenig S, Kory P, Mayo P, Schoenherr JR (2016) The rapid assessment of competency in echocardiography scale validation of a tool for point-of-care ultrasound. J Ultrasound Med 35:1457–1463CrossRefPubMedGoogle Scholar
  13. 13.
    Arntfield RT (2015) The utility of remote supervision with feedback as a method to deliver high-volume critical care ultrasound training. J Crit Care 30:441CrossRefPubMedGoogle Scholar
  14. 14.
    Chang WT, Lee WH, Lee WT, Chen PS, Su YR, Liu PY, Liu YW, Tsai WC (2015) Left ventricular global longitudinal strain is independently associated with mortality in septic shock patients. Intensive Care Med 41:1791–1799CrossRefPubMedGoogle Scholar
  15. 15.
    Orde SR, Behfar A, Stalboerger PG, Barros-Gomes S, Kane GC, Oh JK (2015) Effect of positive end-expiratory pressure on porcine right ventricle function assessed by speckle tracking echocardiography. BMC Anesthesiol. 15:49CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Saleh M, Vieillard-Baron A (2012) On the role of left ventricular diastolic function in the critically ill patient. Intensive Care Med 38:189–191CrossRefPubMedGoogle Scholar
  17. 17.
    Sanfilippo F, Corredor C, Fletcher N, Landesberg G, Benedetto U, Foex P, Cecconi M (2015) Diastolic dysfunction and mortality in septic patients: a systematic review and meta-analysis. Intensive Care Med 41:1004–1013CrossRefPubMedGoogle Scholar
  18. 18.
    Vieillard-Baron A, Slama M, Mayo P, Charron C, Amiel J-B, Esterez C, Leleu F, Repesse X, Vignon P (2013) A pilot study on safety and clinical utility of a single-use 72-hour indwelling transesophageal echocardiography probe. Intensive Care Med 39:629–635CrossRefPubMedGoogle Scholar
  19. 19.
    Geeraerts T, Merceron S, Benhamou D, Vigué B, Duranteau J (2008) Non-invasive assessment of intracranial pressure using ocular sonography in neurocritical care patients. Intensive Care Med 34:2062–2067CrossRefPubMedGoogle Scholar
  20. 20.
    Narasimhan M, Koenig SJ, Mayo PH (2016) A whole-body approach to point of care ultrasound. Chest 150:772–776CrossRefPubMedGoogle Scholar
  21. 21.
    Moore CL, Copel JA (2011) Point-of-care ultrasonography. N Engl J Med 364:749–757CrossRefPubMedGoogle Scholar
  22. 22.
    Volpicelli G, Lamorte A, Tullio M, Giraudo M, Stefanone V, Boero E, Nazerian P, Pozzi R, Frascisco MF (2013) Point-of-care multiorgan ultrasonography for the evaluation of undifferentiated hypotension in the emergency department. Intensive Care Med 39:1290–1298CrossRefPubMedGoogle Scholar
  23. 23.
    Shokoohi H, Boniface KS, Pourmand A, Liu YT, Davison DL, Hawkins KD, Buhumaid RE, Salimian M, Yadav K (2015) Bedside ultrasound reduces diagnostic uncertainty and guides resuscitation in patients with undifferentiated hypotension. Crit Care Med 43:2562–2569CrossRefPubMedGoogle Scholar
  24. 24.
    Mekontso Dessap A, Boissier F, Charron C, Bégot E, Repessé X, Legras A, Brun-Buisson C, Vignon P, Vieillard-Baron A (2016) Acute cor pulmonale during protective ventilation for acute respiratory distress syndrome: prevalence, predictors, and clinical impact. Intensive Care Med 42:862–870CrossRefPubMedGoogle Scholar
  25. 25.
    Bouferrache K, Amiel JB, Chimot L, Caille V, Charron C, Vignon P, Vieillard-Baron A (2012) Initial resuscitation guided by the Surviving Sepsis Campaign recommendations and early echocardiographic assessment of hemodynamics in intensive care unit septic patients: a pilot study. Crit Care Med 40:2821–2827CrossRefPubMedGoogle Scholar
  26. 26.
    Nazerian P, Vanni S, Volpicelli G, Gigli C, Zanobetti M, Bartolucci M, Ciavattone A, Lamorte A, Veltri A, Fabbri A, Grifoni S (2014) Accuracy of point-of-care multiorgan ultrasonography for the diagnosis of pulmonary embolism. Chest 145:950–957CrossRefPubMedGoogle Scholar
  27. 27.
    Mathis G, Blank W, Reißig A, Lechleitner P, Reuß J, Schuler A, Beckh (2005) Thoracic ultrasound for diagnosing pulmonary embolism. A prospective multicenter study of 352 patients. Chest 128:1531–1538CrossRefPubMedGoogle Scholar
  28. 28.
    Niemann T, Egelhof T, Bongratz G (2009) Transthoracic sonography for the Detection of pulmonary embolism—a meta- analysis. Ultraschall Med 30:150–156CrossRefPubMedGoogle Scholar
  29. 29.
    Squizzato A, Rancan E, Dentali F, Bonzini M, Guasti L, Steidl L et al (2013) Diagnostic accuracy of lung ultrasound for pulmonary embolism: a systematic review and meta-analysis. J Thromb Haemost 11:1269–1278CrossRefPubMedGoogle Scholar
  30. 30.
    Meyer G, Vieillard-Baron A, Planquette B (2016) Recent advances in the management of pulmonary embolism: focus on the critically ill patients. Ann Intensive Care 6:19CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Boddi M, Peris A (2016) Deep vein thrombosis in intensive Care. Adv Exp Med Biol. doi: 10.1007/5584_114 Google Scholar
  32. 32.
    Johnson SA, Stevens SM, Woller SC, Lake E, Donadini M, Cheng J et al (2010) Risk of deep vein thrombosis following a single negative whole-leg compression ultrasound: a systematic review and meta-analysis. JAMA 303:438–445CrossRefPubMedGoogle Scholar
  33. 33.
    Lichtenstein DA, Mezière GA (2008) Relevance of lung ultrasound in the diagnosis of acute respiratory failure. The BLUE protocol. Chest 134:117–125CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Silva S, Biendel C, Ruiz J, Olivier M, Bataille B, Geeraerts T et al (2013) Usefulness of cardiothoracic chest ultrasound in the management of acute respiratory failure in critical care practice. Chest 144:859–865CrossRefPubMedGoogle Scholar
  35. 35.
    Kajimoto K, Madeen K, Nakayama T, Tsudo H, Kuroda T, Abe T (2012) Rapid evaluation by lung-cardiac-inferior vena cava (LCI) integrated ultrasound for differentiating heart failure from pulmonary disease as the cause of acute dyspnea in the emergency setting. Cardiovasc Ultrasound 10:49CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Anderson KL, Jenq KY, Fields JM, Panebianco NL, Dean AJ (2013) Diagnosing heart failure among acutely dyspneic patients with cardiac, inferior vena cava, and lung ultrasonography. Am J Emerg Med 31:1208–1214CrossRefPubMedGoogle Scholar
  37. 37.
    Bataille B, Riu B, Ferre F, Moussot PE, Mari A, Brunel E, Ruiz J, Mora M, Fourcade O, Genestal M, Silva S (2014) Integrated use of bedside lung ultrasound and echocardiography in acute respiratory failure: a prospective observational study in ICU. Chest 146:1586–1593CrossRefPubMedGoogle Scholar
  38. 38.
    Frankel HL, Kirkpatrick AW, Elbarbary M, Blaivas M, Desai H, Evans D, Summerfield DT, Slonim A, Breitkreutz R, Price S, Marik PE, Talmor D, Levitov A (2015) Guidelines for the appropriate use of bedside general and cardiac ultrasonography in the evaluation of critically ill patients-part i: general ultrasonography. Crit Care Med 43:2479–2502CrossRefPubMedGoogle Scholar
  39. 39.
    Slama M, Novara A, Safavian A, Ossart M, Safar M, Fagon JY (1997) Improvement of internal jugular vein cannulation using an ultrasound-guided technique. Intensive Care Med 23:916–919CrossRefPubMedGoogle Scholar
  40. 40.
    Airapetian N, Maizel J, Langelle F, Modeliar SS, Karakitsos D, Dupont H, Slama M (2013) Ultrasound-guided central venous cannulation is superior to quick-look ultrasound and landmark methods among inexperienced operators: a prospective randomized study. Intensive Care Med 39:1938–1944CrossRefPubMedGoogle Scholar
  41. 41.
    Brass P, Hellmich M, Kolodziej L, Schick G, Smith AF (2015) Ultrasound guidance versus anatomical landmarks for internal jugular vein catheterization. Cochrane Database Syst Rev 1:CD006962PubMedGoogle Scholar
  42. 42.
    Brass P, Hellmich M, Kolodziej L, Schick G, Smith AF (2015) Ultrasound guidance versus anatomical landmarks for subclavian or femoral vein catheterization. Cochrane Database Syst Rev 1:CD011447 (Review) PubMedGoogle Scholar
  43. 43.
    Hourmozdi JJ, Markin A, Johnson B, Fleming PR, Miller JB (2016) Routine chest radiography is not necessary after ultrasound-guided right internal jugular vein catheterization. Crit Care Med 44:e804–e808CrossRefPubMedGoogle Scholar
  44. 44.
    Lamperti M, Bodenham AR, Pittiruti M, Blaivas M, Augoustides JG, Elbarbary M et al (2012) International evidence-based recommendations on ultrasound-guided vascular access. Intensive Care Med 38:1105–1117CrossRefPubMedGoogle Scholar
  45. 45.
    Maizel J, Ammirati C, Slama M (2010) Posterior vessel wall penetration by needles during internal jugular vein central catheter placement using ultrasound guidance: is that a real danger? Crit Care Med 38:735–736CrossRefPubMedGoogle Scholar
  46. 46.
    Gao YB, Yan JH, Ma JM, Liu XN, Dong JY, Sun F, Tang LW, Li J (2016) Effects of long axis in-plane vs short axis out-of-plane techniques during ultrasound-guided vascular access. Am J Emerg Med 34:778–783CrossRefPubMedGoogle Scholar
  47. 47.
    Baidya DK, Chandralekha Darlong V, Pandey R, Goswami D, Maitra S (2015) Comparative sonoanatomy of classic “short axis” probe position with a novel “medial-oblique” probe position for ultrasound-guided internal jugular vein cannulation: a crossover study. J Emerg Med 48:590–596CrossRefPubMedGoogle Scholar
  48. 48.
    Zieleskiewicz L, Muller L, Lakhal K, Meresse Z, Arbelot C, Bertrand PM et al (2015) Point-of-care ultrasound in intensive care units: assessment of 1073 procedures in a multicentric, prospective, observational study. Intensive Care Med 41:1638–1647CrossRefPubMedGoogle Scholar
  49. 49.
    Maizel J, Bastide MA, Richecoeur J, Frenoy E, Lemaire C, Sauneuf B, Dupont H, Tamion F, Nseir S, Cheyron D, BoReal Study group (2016) Practice of ultrasound-guided central venous catheter technique by the French intensivists: a survey from the BoReal study group. Ann Intensive Care 6:76CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    McGraw R, Chaplin T, McKaigney C, Rang L, Jaeger M, Redfearn D, Davison C, Ungi T, Holden M, Yeo C, Keri Z, Fichtinger G (2016) Development and evaluation of a simulation-based curriculum for ultrasound-guided central venous catheterization. CJEM 18:405–413CrossRefPubMedGoogle Scholar
  51. 51.
    Maizel J, Guyomarc’h L, Henon P, Modeliar SS, de Cagny B, Choukroun G et al (2014) Residents learning ultrasound-guided catheterization are not sufficiently skilled to use landmarks. Crit Care 18:R36CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Lichtenstein D, Goldstein I, Mourgeon E, Cluzel P, Grenier P, Rouby JJ (2004) Comparative diagnostic performances of auscultation, chest radiography, and lung ultrasonography in acute respiratory distress syndrome. Anesthesiology 100:9–15CrossRefPubMedGoogle Scholar
  53. 53.
    Xirouchaki N, Magkanas E, Vaporidi K, Kondili E, Plataki M, Patrianakos A, Akoumianaki E, Georgopoulos D (2011) Lung ultrasound in critically ill patients: comparison with bedside chest radiography. Intensive Care Med 37:1488–1493CrossRefPubMedGoogle Scholar
  54. 54.
    International Consensus statement on training standards for advanced critical care echocardiography (2014) Intensive Care Med 40:654-666Google Scholar
  55. 55.
    Huttemann E, Schelenz C, Kara F, Chatzinikolaou K, Rein-hart K (2004) The use and safety of transesophageal echocardiography in the general ICU—a minireview. Acta Anaesthesiol Scand 48:827–836CrossRefPubMedGoogle Scholar
  56. 56.
    Vieillard-Baron A, Prin S, Chergui K, Dubourg O, Jardin F (2003) Hemodynamic instability in sepsis: bedside assessment by Doppler echocardiography. Am J Respir Crit Care Med 168:1270–1276CrossRefPubMedGoogle Scholar
  57. 57.
    Vieillard-Baron A, Prin S, Chergui K, Dubourg O, Jardin F (2002) Echo-Doppler demonstration of acute cor pulmonale at the bedside in the medical intensive care unit. Am J Respir Crit Care Med 166:1310–1319CrossRefPubMedGoogle Scholar
  58. 58.
    García X, Pinsky MR (2011) Clinical applicability of functional hemodynamic monitoring. Ann Intensive Care. 1:35CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Chacho J, Brar G (2014) Bedside ultrasonography—application in critical care: part II. Indian J Crit Care Med 18:376–381CrossRefGoogle Scholar
  60. 60.
    Dias FS, Rezende EAC, Siva JM, Sanches JL (2014) Hemodynamic monitoring in the intensive Care unit: a Brazilian perspective. Rev Bras Ter Intensive 26:360–366Google Scholar
  61. 61.
    Report of a WHO Scientific Group (1985) Future use of new imaging technologies in developing countries. World Health Organ Tech Rep Ser 723:1985Google Scholar
  62. 62.
    Dietrich CF, Goudie A, Chiorean L, Cui Win Wu, Gilja OH, Dong YI, Abramowicz, Vinayak S, Westerway SC, Nolsoe CP, Chou Y-H, Blaivas M (2017) Point of Care Ultrasound: a WFUMB Position Paper. Ultrasound Med Biol 43:49–58CrossRefPubMedGoogle Scholar
  63. 63.
    McBeth PB, Crawford I, Blaivas M, Hamilton T, Musselwhite K, Panebianco N, Melniker L, Ball CG, Gargani L, Gherdovich C, Kirkpatrick AW (2011) Simple, almost anywhere with almost anyone: remote low-cost telementored resuscitative lung ultrasound. J Trauma 71:P1528–P1535CrossRefGoogle Scholar
  64. 64.
    Mongodi S, Via G, Girard M, Rouquette I, Misset B, Braschi A, Mojoli F, Bouhemad B (2016) Lung ultrasound for early diagnosis of ventilator-associated pneumonia. Chest 149:969–980CrossRefPubMedGoogle Scholar
  65. 65.
    Bourcier JE, Braga S, Garnier D (2016) Lung ultrasound will soon replace chest radiography in the diagnosis of acute community-acquired pneumonia. Curr Infect Dis Rep 18:43CrossRefPubMedGoogle Scholar
  66. 66.
    Haddam M, Zieleskiewicz L, Perbet S et al (2016) Lung ultrasonography for assessment of oxygenation response to prone position ventilation in ARDS. Intensive Care Med 42:1546–1556CrossRefPubMedGoogle Scholar
  67. 67.
    Bouhemad B, Brisson H, Le-Guen M, Arbelot C, Lu Q, Rouby JJ (2011) Bedside ultrasound assessment of positive end-expiratory pressure-induced lung recruitment. Am J Respir Crit Care Med 183:341–347CrossRefPubMedGoogle Scholar
  68. 68.
    Soummer A, Perbet S, Brisson H, Arbelot C, Constantin JM, Lu Q, Rouby JJ, Lung Ultrasound Study Group (2012) Ultrasound assessment of lung aeration loss during a successful weaning trial predicts postextubation distress. Crit Care Med 40:2064–2072CrossRefPubMedGoogle Scholar
  69. 69.
    Mayo P, Volpicelli G, Lerolle N, Schreiber A, Doelken P, Vieillard-Baron A (2016) Ultrasonography evaluation during the weaning process: the heart, the diaphragm, the pleura and the lung. Intensive Care Med 42:1107–1117CrossRefPubMedGoogle Scholar
  70. 70.
    Hjortrup PB, Haase N, Bundgaard H, Thomsen SL, Winding R, Pettilä V et al (2016) Restricting volumes of resuscitation fluid in adults with septic shock after initial management: the CLASSIC randomized, parallel-group, multicenter feasibility trial. Intensive Care Med 42:1695–1705CrossRefPubMedGoogle Scholar
  71. 71.
    Chen C, Kollef MH (2015) Targeted fluid minimization following initial resuscitation in septic shock. A pilot study. Chest 148:1462–1469CrossRefPubMedGoogle Scholar
  72. 72.
    Biais M, Ehrmann S, Mari A, Conte B, Mahjoub Y, Desebbe O et al (2014) Clinical relevance of pulse pressure variations for predicting fluid responsiveness in mechanically ventilated intensive care unit patients: the grey zone approach. Crit Care 18:587CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Vignon P, Repessé X, Bégot E, Léger J, Jacob C, Bouferrache K, Slama M, Prat G, Vieillard-Baron A (2016) Comparison of Echocardiographic Indices Used to Predict Fluid Responsiveness in Ventilated Patients. Am J Respir Crit Care Med. [Epub ahead of print]Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and ESICM 2017

Authors and Affiliations

  • P. Mayo
    • 1
    Email author
  • R. Arntfield
    • 2
  • M. Balik
    • 3
  • P. Kory
    • 4
  • G. Mathis
    • 5
  • G. Schmidt
    • 6
  • M. Slama
    • 7
    • 8
  • G. Volpicelli
    • 9
  • N. Xirouchaki
    • 10
  • A. McLean
    • 11
  • A. Vieillard-Baron
    • 12
    • 13
  1. 1.Division of Pulmonary, Critical Care, and Sleep MedicineHofstra Northwell Northshore/Long Island Jewish Medical CentersNew Hyde ParkUSA
  2. 2.Division of Critical Care MedicineWestern UniversityLondonCanada
  3. 3.Department on Anesthesiology and Intensive Care, 1st Faculty of MedicineCharles University and General University HospitalPrague 2Czech Republic
  4. 4.Division of Allergy, Pulmonary, and Critical CareUniversity of Wisconsin School of Medicine and Public HealthMadisonUSA
  5. 5.Praxis for Internal MedicineRankweilAustria
  6. 6.Division of Pulmonary Diseases, Critical Care, and Occupational MedicineUniversity of IowaIowa CityUSA
  7. 7.Service de Réanimation Médical. CHU SudAmiensFrance
  8. 8.Unité INSERM 1088UPJVAmiensFrance
  9. 9.Department of Emergency MedicineSan Luigi Gonzaga University HospitalTurinItaly
  10. 10.N. Xirouchaki Intensive Care UnitHeraklion University HospitalCreteGreece
  11. 11.Department of Intensive Care Medicine, Nepean Hospital, Sydney Medical SchoolUniversity of SydneySydneyAustralia
  12. 12.Medical-surgical Intensive Care UnitUniversity Hospital Ambroise Paré, Assistance Publique-Hôpitaux de ParisBoulogne-BillancourtFrance
  13. 13.INSERM U-1018, CESP, Team 5University of Versailles Saint-Quentin en YvelinesVillejuifFrance

Personalised recommendations