Intensive Care Medicine

, Volume 43, Issue 9, pp 1187–1197 | Cite as

The intensive care medicine research agenda on multidrug-resistant bacteria, antibiotics, and stewardship

  • Marin H. Kollef
  • Matteo Bassetti
  • Bruno Francois
  • Jason Burnham
  • George Dimopoulos
  • Jose Garnacho-Montero
  • Jeffrey Lipman
  • Charles-Edouard Luyt
  • David P. Nicolau
  • Maarten J. Postma
  • Antonio Torres
  • Tobias Welte
  • Richard G. Wunderink
Research Agenda

Abstract

Purpose

To concisely describe the current standards of care, major recent advances, common beliefs that have been contradicted by recent trials, areas of uncertainty, and clinical studies that need to be performed over the next decade and their expected outcomes with regard to the management of multidrug-resistant (MDR) bacteria, antibiotic use, and antimicrobial stewardship in the intensive care unit (ICU) setting.

Methods

Narrative review based on a systematic analysis of the medical literature, national and international guidelines, and expert opinion.

Results

The prevalence of infection of critically ill patients by MDR bacteria is rapidly evolving. Clinical studies aimed at improving understanding of the changing patterns of these infections in ICUs are urgently needed. Ideal antibiotic utilization is another area of uncertainty requiring additional investigations aimed at better understanding of dose optimization, duration of therapy, use of combination treatment, aerosolized antibiotics, and the integration of rapid diagnostics as a guide for treatment. Moreover, there is an imperative need to develop non-antibiotic approaches for the prevention and treatment of MDR infections in the ICU. Finally, clinical research aimed at demonstrating the beneficial impact of antimicrobial stewardship in the ICU setting is essential.

Conclusions

These and other fundamental questions need to be addressed over the next decade in order to better understand how to prevent, diagnose, and treat MDR bacterial infections. Clinical studies described in this research agenda provide a template and set priorities for investigations that should be performed in this field.

Keywords

Antibiotics Bacteria Stewardship Multidrug resistance 

Notes

Compliance with ethical standards

Conflicts of interest

Dr. Kollef is an investigator for the Arsanis and Aridis monoclonal antibody studies. Dr. Francois is an investigator for the Aridis monoclonal antibody study.

References

  1. 1.
    Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA, Lynfield R, Maloney M, McAllister-Hollod L, Nadle J, Ray SM, Thompson DL, Wilson LE, Fridkin SK, Infections Emerging Infections Program Healthcare-Associated, Team Antimicrobial Use Prevalence Survey (2014) Multistate point-prevalence survey of health care-associated infections. N Engl J Med 370(13):1198––1208. doi:10.1056/NEJMoa1306801 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Albiger B, Glasner C, Struelens MJ, Grundmann H, Monnet DL, EuropeanSurveyof Carbapenemase-Producing Enterobacteriaceae (EuSCAPE) working group (2015) Carbapenemase-producing Enterobacteriaceae in Europe: assessment by national experts from 38 countries, May 2015. Euro Surveill. doi:10.2807/1560-7917.ES.2015.20.45.30062 PubMedGoogle Scholar
  3. 3.
    Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18(3):268––281. doi:10.1111/j.1469-0691.2011.03570.x CrossRefPubMedGoogle Scholar
  4. 4.
    Kollef MH, Sherman G, Ward S, Fraser VJ (1999) Inadequate antimicrobial treatment of infections: a risk factor for hospital mortality among critically ill patients. Chest 115:462––474CrossRefPubMedGoogle Scholar
  5. 5.
    Garnacho-Montero J, Garcia-Garmendia JL, Barrero-Almodovar A, Jimenez-Jimenez FJ, Perez-Paredes C, Ortiz-Leyba C (2003) Impact of adequate empirical antibiotic therapy on the outcome of patients admitted to the intensive care unit with sepsis. Crit Care Med 31:2742––2751. doi:10.1097/01.CCM.0000098031.24329.10 CrossRefPubMedGoogle Scholar
  6. 6.
    Dellinger RP, Levy MM, Rhodes A et al (2013) Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med 41:580––637. doi:10.1097/CCM.0b013e31827e83af CrossRefPubMedGoogle Scholar
  7. 7.
    Kollef MH, Micek ST (2012) Antimicrobial stewardship programs: mandatory for all ICUs. Crit Care 16:179. doi:10.1186/cc11853 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kumar A (2014) Antimicrobial delay and outcome in severe sepsis. Crit Care Med 42:e802. doi:10.1097/CCM.0000000000000620 CrossRefPubMedGoogle Scholar
  9. 9.
    de Groot B, Ansems A, Gerling DH, Rijpsma D, van Amstel P, Linzel D, Kostense PJ, Jonker M, de Jonge E (2015) The association between time to antibiotics and relevant clinical outcomes in emergency department patients with various stages of sepsis: a prospective multi-center study. Crit Care 19:194. doi:10.1186/s13054-015-0936-3 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Roberts JA, Taccone FS, Lipman J (2016) Understanding PK/PD. Intensive Care Med 42(11):1797––1800. doi:10.1007/s00134-015-4032-6 CrossRefPubMedGoogle Scholar
  11. 11.
    Roberts JA, Abdul-Aziz MH, Lipman J, Mouton JW, Vinks AA, Felton TW, Hope WW, Farkas A, Neely MN, Schentag JJ, Drusano G, Frey OR, Theuretzbacher U, Kuti JL (2014) Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. Lancet Infect Dis 14:498––509. doi:10.1016/S1473-3099(14)70036-2 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Garnacho-Montero J, Gutiérrez-Pizarraya A, Escoresca-Ortega A, Corcia-Palomo Y, Fernández-Delgado E, Herrera-Melero I, Ortiz-Leyba C, Márquez-Vácaro JA (2014) De-escalation of empirical therapy is associated with lower mortality in patients with severe sepsis and septic shock. Intensive Care Med 40:32––40. doi:10.1007/s00134-013-3077-7 CrossRefPubMedGoogle Scholar
  13. 13.
    Leone M, Bechis C, Baumstarck K, Lefrant JY, Albanèse J, Jaber S, Lepape A, Constantin JM, Papazian L, Bruder N, Allaouchiche B, Bézulier K, Antonini F, Textoris J, Martin C, Network Investigators AZUREA (2014) De-escalation versus continuation of empirical antimicrobial treatment in severe sepsis: a multicenter non-blinded randomized noninferiority trial. Intensive Care Med 40:1399––1408. doi:10.1007/s00134-014-3411-8 CrossRefPubMedGoogle Scholar
  14. 14.
    Kollef MH, Chastre J, Clavel M, Restrepo MI, Michiels B, Kaniga K, Cirillo I, Kimko H, Redman R (2012) A randomized trial of 7-day doripenem versus 10-day imipenem-cilastatin for ventilator-associated pneumonia. Crit Care 16(6):R218. doi:10.1186/cc11862 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Chastre J, Wolff M, Fagon JY, Chevret S, Thomas F, Wermert D, Clementi E, Gonzalez J, Jusserand D, Asfar P, Perrin D, Fieux F, Aubas S, Pneum A, Trial Group (2003) Comparison of 8 vs 15 days of antibiotic therapy for ventilator-associated pneumonia in adults: a randomized trial. JAMA 290(19):2588––2598. doi:10.1001/jama.290.19.2588 CrossRefPubMedGoogle Scholar
  16. 16.
    Sawyer RG, Claridge JA, Nathens AB, Rotstein OD, Duane TM, Evans HL, Cook CH, O’Neill PJ, Mazuski JE, Askari R, Wilson MA, Napolitano LM, Namias N, Miller PR, Dellinger EP, Watson CM, Coimbra R, Dent DL, Lowry SF, Cocanour CS, West MA, Banton KL, Cheadle WG, Lipsett PA, Guidry CA, Popovsky K (2015) Trial of short-course antimicrobial therapy for intraabdominal infection. N Engl J Med 372(21):1996––2005. doi:10.1056/NEJMoa1411162 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    de Jong E, van Oers JA, Beishuizen A, Vos P, Vermeijden WJ, Haas LE et al (2016) Efficacy and safety of procalcitonin guidance in reducing the duration of antibiotic treatment in critically ill patients: a randomised, controlled, open-label trial. Lancet Infect Dis 16(7):819––827. doi:10.1016/S1473-3099(16)00053-0 CrossRefPubMedGoogle Scholar
  18. 18.
    van Duin D, Bonomo RA (2016) Ceftazidime/Avibactam and Ceftolozane/Tazobactam: Second-generation β-Lactam/β-Lactamase Inhibitor Combinations. Clin Infect Dis 63:234––241. doi:10.1093/cid/ciw243 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
  20. 20.
    Udy AA, Varghese JM, Altukroni M, Briscoe S, McWhinney BC, Ungerer JP, Lipman J, Roberts JA (2012) Subtherapeutic initial β-lactam concentrations in select critically ill patients: association between augmented renal clearance and low trough drug concentrations. Chest 142:30––39. doi:10.1378/chest.11-1671 CrossRefPubMedGoogle Scholar
  21. 21.
    Udy AA, Lipman J, Jarrett P, Klein K, Wallis SC, Patel K, Kirkpatrick CM, Kruger PS, Paterson DL, Roberts MS, Roberts JA (2015) Are standard doses of piperacillin sufficient for critically ill patients with augmented creatinine clearance? Crit Care 19:28. doi:10.1186/s13054-015-0750-y CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Huttner A, Harbarth S, Hope WW, Lipman J, Roberts JA (2015) Therapeutic drug monitoring of the β-lactam antibiotics: what is the evidence and which patients should we be using it for? J Antimicrob Chemother 70:3178––3183. doi:10.1093/jac/dkv201 PubMedGoogle Scholar
  23. 23.
    Udy AA, Roberts JA, Lipman J (2013) Clinical implications of antibiotic pharmacokinetic principles in the critically ill. Intensive Care Med 39:2070––2082. doi:10.1007/s00134-013-3088-4 CrossRefPubMedGoogle Scholar
  24. 24.
    Wenzler E, Fraidenburg DR, Scardina T, Danziger LH (2016) Inhaled antibiotics for Gram-negative infections. Clin Microbiol Rev 29:581––632. doi:10.1128/CMR.00101-15 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kollef MH, Ricard JD, Roux D, Francois B, Ischaki E, Rozgonyi Z, Boulain T, Ivanyi Z, János G, Garot D, Koura F, Zakynthinos E, Dimopoulos G, Torres A, Danker W, Montgomery AB (2016) A randomized trial of the amikacin fosfomycin inhalation system for the adjunctive therapy of Gram-negative ventilator-associated pneumonia: IASIS Trial. Chest. doi: 10.1016/j.chest.2016.11.026 [Epub ahead of print]
  26. 26.
    Dulhunty JM, Roberts JA, Davis JS, Webb SAR, Bellomo R, Gomersall C, Shirwadkar C, Eastwood GM, Myburgh J, Paterson DL, Starr T, Paul SK, Lipman J (2015) A multicenter randomized trial of continuous versus intermittent β-lactam infusion in Severe Sepsis. Am J Resp Crit Care Med 192:1298––1305. doi:10.1164/rccm.201505-0857OC CrossRefPubMedGoogle Scholar
  27. 27.
    Abdul-Aziz MH, Sulaiman H, Mat-Nor MB, Rai V, Wong KK, Hasan MS, Abd Rahman AN, Jamal JA, Wallis SC, Lipman J, Staatz CE, Roberts JA (2016) Beta-Lactam Infusion in Severe Sepsis (BLISS): a prospective, two-centre, open-labelled randomised controlled trial of continuous versus intermittent beta-lactam infusion in critically ill patients with severe sepsis. Intensive Care Med 42(10):1535––1545. doi:10.1007/s00134-015-4188-0 CrossRefPubMedGoogle Scholar
  28. 28.
    Roberts JA, Abdul-Aziz MH, Davis JS, Dulhunty JM, Cotta MO, Myburgh J, Bellomo R, Lipman J (2016) Continuous versus intermittent β-lactam infusion in severe sepsis. a meta-analysis of individual patient data from randomized trials. Am J Respir Crit Care Med 194(6):681––691. doi:10.1164/rccm.201601-0024OC CrossRefPubMedGoogle Scholar
  29. 29.
    Palmer LB, Smaldone GC (2014) Reduction of bacterial resistance with inhaled antibiotics in the intensive care unit. Am J Respir Crit Care Med 189(10):1225––1233. doi:10.1164/rccm.201312-2161OC CrossRefPubMedGoogle Scholar
  30. 30.
    Kollef MH (2016) Counterpoint: Should inhaled antibiotic therapy be routinely used for the treatment of bacterial lower respiratory tract infections in the ICU setting? No. Chest. doi: 10.1016/j.chest.2016.11.007 [Epub ahead of print]
  31. 31.
    Daniels T, Mills N, Whitaker P (2013) Nebuliser systems for drug delivery in cystic fibrosis. Cochrane Database Syst Rev 4:CD007639. doi: 10.1002/14651858.CD007639.pub2
  32. 32.
    Kalil AC, Metersky ML, Klompas M, Muscedere J, Sweeney DA, Palmer LB, Napolitano LM, O’Grady NP, Bartlett JG, Carratalà J, El Solh AA, Ewig S, Fey PD, File TM Jr, Restrepo MI, Roberts JA, Waterer GW, Cruse P, Knight SL, Brozek JL (2016) Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis 63:575––582. doi:10.1093/cid/ciw504 CrossRefPubMedGoogle Scholar
  33. 33.
    Luyt CE, Eldon MA, Stass H, Gribben D, Corkery K, Chastre J (2011) Pharmacokinetics and tolerability of amikacin administered as BAY41-6551 aerosol in mechanically ventilated patients with gram-negative pneumonia and acute renal failure. J Aerosol Med Pulm Drug Deliv 24(4):183––190. doi:10.1089/jamp.2010.0860 CrossRefPubMedGoogle Scholar
  34. 34.
    PARI eFlow rapid, Technical Data. http://www.pari.de/uk-en/products/lower-airways-1/eflow-rapid-nebuliser-system-1/ Accessed 2 Aug 2016
  35. 35.
    Razazi K, Derde LP, Verachten M, Legrand P, Lesprit P, Brun-Buisson C (2012) Clinical impact and risk factors for colonization with extended-spectrum β-lactamase-producing bacteria in the intensive care unit. Intensive Care Med 38(11):1769––1778. doi:10.1007/s00134-012-2675-0 CrossRefPubMedGoogle Scholar
  36. 36.
    Bassetti M, Poulakou G, Timsit JF (2016) Focus on antimicrobial use in the era of increasing antimicrobial resistance in ICU. Intensive Care Med 42(6):955––958. doi:10.1007/s00134-016-4341-4 CrossRefPubMedGoogle Scholar
  37. 37.
    ESCMID Conference on Reviving Old Antibiotics, 22–24 October 2014, Vienna, Austria https://www.escmid.org/research_projects/escmid_conferences/reviving_old_antibiotics/.
  38. 38.
    Bogaerts P, Hamels S, de Mendonca R, Huang TD, Roisin S, Remacle J, Markine-Goriaynoff N, de Longueville F, Plüster W, Denis O, Glupczynski Y (2013) Analytical validation of a novel high multiplexing real-time PCR array for the identification of key pathogens causative of bacterial ventilator-associated pneumonia and their associated resistance genes. J Antimicrob Chemother 68:340––347. doi:10.1093/jac/dks392 CrossRefPubMedGoogle Scholar
  39. 39.
    François B, Luyt CE, Dugard A, Wolff M, Diehl JL, Jaber S, Forel JM, Garot D, Kipnis E, Mebazaa A, Misset B, Andremont A, Ploy MC, Jacobs A, Yarranton G, Pearce T, Fagon JY, Chastre J (2012) Safety and pharmacokinetics of an anti-PcrV PEGylated monoclonal antibody fragment in mechanically ventilated patients colonized with Pseudomonas aeruginosa: a randomized, double-blind, placebo-controlled trial. Crit Care Med 40(8):2320––2326. doi:10.1097/CCM.0b013e31825334f6 CrossRefPubMedGoogle Scholar
  40. 40.
    François B, Chastre J, Eggiman P, Laterre PF, Torres A, Sanchez M, Esser M, Bishop B, Bonten M, Goosens H, Jafri HS (2016) The SAATELLITE and EVADE clinical studies within the COMBACTE consortium: a collaborative effort between academic institutions and pharmaceutical industry in advancing the conduct and feasibility of clinical trials to evaluate novel antibacterial drugs to treat hospital acquired bacterial pneumonia and ventilator-associated bacterial pneumonia. Clin Infect Dis 63(Suppl 2):S46––S51. doi:10.1093/cid/ciw245 CrossRefPubMedGoogle Scholar
  41. 41.
    Thandar M, Lood R, Winer BY, Deutsch DR, Euler CW, Fischetti VA (2016) Novel engineered peptides of a phage lysin as effective antimicrobials against multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 60(5):2671––2679. doi:10.1128/AAC.02972-15 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Freire AT, Melnyk V, Kim MJ, Datsenko O, Dzyublik O, Glumcher F, Chuang YC, Maroko RT, Dukart G, Cooper CA, Korth-Bradley JM, Dartois N, Gandjini H, 311 Study Group (2010) Comparison of tigecycline with imipenem/cilastatin for the treatment of hospital-acquired pneumonia. Diagn Microbiol Infect Dis 68:140––151. doi:10.1016/j.diagmicrobio.2010.05.012 CrossRefPubMedGoogle Scholar
  43. 43.
    Awad SS, Rodriguez AH, Chuang YC, Marjanek Z, Pareigis AJ, Reis G, Scheeren TW, Sánchez AS, Zhou X, Saulay M, Engelhardt M (2014) A phase 3 randomized double-blind comparison of ceftobiprole medocaril versus ceftazidime plus linezolid for the treatment of hospital-acquired pneumonia. Clin Infect Dis 59:51––61. doi:10.1093/cid/ciu219 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Roberts JA, Paul SK, Akova M, Bassetti M, De Waele JJ, Dimopoulos G, Kaukonen KM, Koulenti D, Martin C, Montravers P, Rello J, Rhodes A, Starr T, Wallis SC, Lipman J, DALI Study (2014) DALI defining antibiotic levels in intensive care unit patients: are current β-lactam antibiotic doses sufficient for critically ill patients? Clin Infect Dis 5:1072––1083. doi:10.1093/cid/ciu027 CrossRefGoogle Scholar
  45. 45.
    Banerjee R, Teng CB, Cunningham SA et al (2015) Randomized trial of rapid multiplex polymerase chain reaction-based blood culture identification and susceptibility testing. Clin Infect Dis 61:1071––1080CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Kollef MH, Burnham CAD (2016) Ventilator-associated pneumonia: the role of emerging diagnostic technologies. Semin Respir Crit Care Med [In press] Google Scholar
  47. 47.
    Huang A, Newton D, Kunapuli A et al (2013) Impact of rapid organism identification via matrix-assisted laser desorption/ionization time-of-flight combined with antimicrobial stewardship team intervention in adult patients with bacteremia and candidemia. Clin Infect Dis 57:1237––1245CrossRefPubMedGoogle Scholar
  48. 48.
    Parta M, Goebel M, Thomas J, Matloobi M, Stager C, Musher DM (2010) Impact of an assay that enables rapid determination of Staphylococcus species and their drug susceptibility on the treatment of patients with positive blood culture results. Infect Control Hosp Epidemiol 31:1043––1048CrossRefPubMedGoogle Scholar
  49. 49.
    Timbrook TT, Morton JB, McConeghy KW, Caffrey AR, Mylonakis E, LaPlante KL (2016) The effect of molecular rapid diagnostic testing on clinical outcomes in bloodstream infections: a systematic review and meta-analysis. Clin Infect Dis [Epub ahead of print] Google Scholar
  50. 50.
    Kollef MH, Micek ST (2014) Rational use of antibiotics in the ICU: balancing stewardship and clinical outcomes. JAMA 312:1403––1404CrossRefPubMedGoogle Scholar
  51. 51.
    Barlam TF, Cosgrove SE, Abbo LM, MacDougall C, Schuetz AN, Septimus EJ, Srinivasan A, Dellit TH, Falck-Ytter YT, Fishman NO, Hamilton CW, Jenkins TC, Lipsett PA, Malani PN, May LS, Moran GJ, Neuhauser MM, Newland JG, Ohl CA, Samore MH, Seo SK, Trivedi KK (2016) Executive summary: implementing an antibiotic stewardship program: guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin Infect Dis 62:1197––1202. doi:10.1093/cid/ciw217 CrossRefPubMedGoogle Scholar
  52. 52.
    Kaki R, Elligsen M, Walker S, Simor A, Palmay L, Daneman N (2011) Impact of antimicrobial stewardship in critical care: a systematic review. J Antimicrob Chemother 66:1223––1230. doi:10.1093/jac/dkr137 CrossRefPubMedGoogle Scholar
  53. 53.
    Karanika S, Paudel S, Grigoras C, Kalbasi A, Mylonakis E (2016) Systematic review and meta-analysis of clinical and economic outcomes from the implementation of hospital-based antimicrobial stewardship programs. Antimicrob Agents Chemother 60:4840––4852. doi:10.1128/AAC.00825-16 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Chou AF, Graber CJ, Jones M, Zhang Y, Goetz MB, Madaras-Kelly K, Samore M, Kelly A, Glassman PA (2016) Characteristics of Antimicrobial Stewardship Programs at Veterans Affairs Hospitals: results of a Nationwide Survey. Infect Control Hosp Epidemiol 37:647––654. doi:10.1017/ice.2016.26 CrossRefPubMedGoogle Scholar
  55. 55.
    Wagner B, Filice GA, Drekonja D, Greer N, MacDonald R, Rutks I, Butler M, Wilt TJ (2014) Antimicrobial stewardship programs in inpatient hospital settings: a systematic review. Infect Control Hosp Epidemiol 35:1209––1228. doi:10.1086/678057 CrossRefPubMedGoogle Scholar
  56. 56.
    Doern CD (2013) Integration of technology into clinical practice. Clin Lab Med 33:705––729. doi:10.1016/j.cll.2013.03.004 CrossRefPubMedGoogle Scholar
  57. 57.
    Iregui M, Ward S, Sherman G, Fraser VJ, Kollef MH (2002) Clinical importance of delays in the initiation of appropriate antibiotic treatment for ventilator-associated pneumonia. Chest 122:262––268CrossRefPubMedGoogle Scholar
  58. 58.
    Bauer KA, Perez KK, Forrest GN, Goff DA (2014) Review of rapid diagnostic tests used by antimicrobial stewardship programs. Clin Infect Dis 59(Suppl 3):S134––S145. doi:10.1093/cid/ciu547 CrossRefPubMedGoogle Scholar
  59. 59.
    Sweeney TE, Shidham A, Wong HR, Khatri P (2015) A comprehensive time-course-based multicohort analysis of sepsis and sterile inflammation reveals a robust diagnostic gene set. Sci Transl Med 7:287ra271. doi:10.1126/scitranslmed.aaa5993 CrossRefGoogle Scholar
  60. 60.
    Sweeney TE, Wong HR, Khatri P (2016) Robust classification of bacterial and viral infections via integrated host gene expression diagnostics. Sci Transl Med 8:346ra391. doi:10.1126/scitranslmed.aaf7165 CrossRefGoogle Scholar
  61. 61.
    Steinberg M, Dresser LD, Daneman N, Smith OM, Matte A, Marinoff N, Bell CM, Morris AM (2016) A national survey of critical care physicians’ knowledge, attitudes, and perceptions of antimicrobial stewardship programs. J Intensive Care Med 31:61––65. doi:10.1177/0885066614541922 CrossRefPubMedGoogle Scholar
  62. 62.
    Rosa RG, Goldani LZ, dos Santos RP (2014) Association between adherence to an antimicrobial stewardship program and mortality among hospitalised cancer patients with febrile neutropaenia: a prospective cohort study. BMC Infect Dis 14:286. doi:10.1186/1471-2334-14-286 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Wolf J, Sun Y, Tang L, Newland JG, Gerber JS, Van Dyke CJ, Hymes SR, Yu D, Carias DC, Bryant PA (2016) Antimicrobial stewardship barriers and goals in pediatric oncology and bone marrow transplantation: a survey of antimicrobial stewardship practitioners. Infect Control Hosp Epidemiol 37:343––347. doi:10.1017/ice.2015.295 CrossRefPubMedGoogle Scholar
  64. 64.
    Jump RL, Heath B, Crnich CJ, Moehring R, Schmader KE, Olds D, Higgins PA (2015) Knowledge, beliefs, and confidence regarding infections and antimicrobial stewardship: a survey of Veterans Affairs providers who care for older adults. Am J Infect Control 43:298––300. doi:10.1016/j.ajic.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Grigoryan L, Naik AD, Horwitz D, Cadena J, Patterson JE, Zoorob R, Trautner BW (2016) Survey finds improvement in cognitive biases that drive overtreatment of asymptomatic bacteriuria after a successful antimicrobial stewardship intervention. Am J Infect Control doi: 10.1016/j.ajic.2016.04.238 (Epub ahead of print)
  66. 66.
    Czaplewski L, Bax R, Clokie M, Dawson M, Fairhead H, Fischetti VA, Foster S, Gilmore BF, Hancock RE, Harper D, Henderson IR, Hilpert K, Jones BV, Kadioglu A, Knowles D, Ólafsdóttir S, Payne D, Projan S, Shaunak S, Silverman J, Thomas CM, Trust TJ, Warn P, Rex JH (2016) Alternatives to antibiotics-a pipeline portfolio review. Lancet Infect Dis 16:239––251. doi:10.1016/S1473-3099(15)00466-1 CrossRefPubMedGoogle Scholar
  67. 67.
    Hauser AR, Mecsas J, Moir DT (2016) Beyond antibiotics: new therapeutic approaches for bacterial infections. Clin Infect Dis 63:89––95. doi:10.1093/cid/ciw200 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Knisely JM, Liu B, Ranallo RT, Zou L (2016) Vaccines for healthcare-associated infections: promise and challenge. Clin Infect Dis 63:657––662. doi:10.1093/cid/ciw333 CrossRefPubMedGoogle Scholar
  69. 69.
    McDonnell A, Rex JH, Goossens H, Bonten M, Fowler VG Jr, Dane A (2016) Efficient delivery of investigational antibacterial agents via sustainable clinical trial networks. Clin Infect Dis 63(Suppl 2):S57––S59. doi:10.1093/cid/ciw244 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Cillóniz C, Gabarrús A, Ferrer M, Puig de la Bellacasa J, Rinaudo M, Mensa J, Niederman MS, Torres A (2016) Community-Acquired Pneumonia Due to Multidrug- and Non-Multidrug-Resistant Pseudomonas aeruginosa. Chest 150:415––425. doi:10.1016/j.chest.2016.03.042 CrossRefPubMedGoogle Scholar
  71. 71.
    Grundmann H, Glasner C, Albiger B, Aanensen DM, Tomlinson CT, Andrasević AT, Cantón R, Carmeli Y, Friedrich AW, Giske CG, Glupczynski Y, Gniadkowski M, Livermore DM, Nordmann P, Poirel L, Rossolini GM, Seifert H, Vatopoulos A, Walsh T, Woodford N, Monnet DL (2016) Occurrence of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in the European survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE): a prospective, multinational study. Lancet Infect Dis. doi:10.1016/S1473-3099(16)30257-2 PubMedGoogle Scholar
  72. 72.
    MacFadden DR, LaDelfa A, Leen J, Gold WL, Daneman N, Weber E, Al-Busaidi I, Petrescu D, Saltzman I, Devlin M, Andany N, Leis JA (2016) Impact of reported beta-lactam allergy on inpatient outcomes: a multicenter prospective cohort study. Clin Infect Dis 63:904––910. doi:10.1093/cid/ciw462 CrossRefPubMedGoogle Scholar
  73. 73.
    Blumenthal KG, Shenoy ES, Varughese CA, Hurwitz S, Hooper DC, Banerji A (2015) Impact of a clinical guideline for prescribing antibiotics to inpatients reporting penicillin or cephalosporin allergy. Ann Allergy Asthma Immunol 115:294––300. doi:10.1016/j.anai.2015.05.011 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Valerio M, Rodriguez-Gonzalez CG, Munoz P, Caliz B, Sanjurjo M, Bouza E (2014) Evaluation of antifungal use in a tertiary care institution: antifungal stewardship urgently needed. J Antimicrob Chemother 69:1993––1999. doi:10.1093/jac/dku053 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and ESICM 2017

Authors and Affiliations

  • Marin H. Kollef
    • 1
  • Matteo Bassetti
    • 2
  • Bruno Francois
    • 3
  • Jason Burnham
    • 4
  • George Dimopoulos
    • 5
  • Jose Garnacho-Montero
    • 6
    • 7
  • Jeffrey Lipman
    • 8
    • 9
  • Charles-Edouard Luyt
    • 10
    • 11
  • David P. Nicolau
    • 12
  • Maarten J. Postma
    • 13
  • Antonio Torres
    • 14
  • Tobias Welte
    • 15
  • Richard G. Wunderink
    • 16
  1. 1.Division of Pulmonary and Critical Care MedicineWashington University School of MedicineSt. LouisUSA
  2. 2.Infectious Diseases DivisionSanta Maria Misericordia University HospitalUdineItaly
  3. 3.Service de Réanimation Polyvalente, Inserm CIC-1435CHU DupuytrenLimogesFrance
  4. 4.Division of Infectious DiseasesWashington University School of MedicineSt. LouisUSA
  5. 5.Department of Critical Care, Attikon University Hospital, Medical SchoolNational and Kapodistrian University of AthensAthensGreece
  6. 6.Unidad Clínica de Cuidados IntensivosHospital Universitario Virgen MacarenaSevilleSpain
  7. 7.Institute of Biomedicine of SevilleIBiS/CSIC/University of SevilleSevilleSpain
  8. 8.Department of Intensive Care MedicineRoyal Brisbane and Women’s HospitalBrisbaneAustralia
  9. 9.Burns, Trauma, and Critical Care Research CentreThe University of QueenslandBrisbaneAustralia
  10. 10.Service de RéanimationGroupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de ParisParisFrance
  11. 11.Sorbonne Universités, UPMC Université Paris 06, INSERMUMRS 1166-ICAN Institute of Cardiometabolism and NutritionParisFrance
  12. 12.Center for Anti-infective Research and Development and Division of Infectious DiseasesHartford HospitalHartfordUSA
  13. 13.Unit of PharmacoTherapy, Epidemiology & Economics, Department of Pharmacy and Department of EpidemiologyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
  14. 14.Department of Pulmonology, Hospital Clinic of Barcelona, CIBERES, IDIBAPSUniversity of BarcelonaBarcelonaSpain
  15. 15.Department of PulmonologyHannover Medical SchoolHannoverGermany
  16. 16.Pulmonary and Critical CareNorthwestern University Feinberg School of MedicineChicagoUSA

Personalised recommendations