Intensive Care Medicine

, Volume 43, Issue 3, pp 440–442 | Cite as

Intensive care medicine in 2050: NEWS for hemodynamic monitoring

  • Frederic Michard
  • Michael R. Pinsky
  • Jean-Louis Vincent
What's New in Intensive Care


  1. 1.
    Schwartz G, Tee BCK, Mei J et al (2013) Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat Commun 4:1859CrossRefPubMedGoogle Scholar
  2. 2.
    Michard F (2016) Hemodynamic monitoring in the era of digital health. Ann Intensive Care 6:15CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hatib F, Jansen JR, Pinsky MR (2011) Peripheral vascular decoupling in porcine endotoxic shock. J Appl Physiol 111:853–860CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Maisch S, Bohm SH, Sola J et al (2011) Heart-lung interactions measured by electrical impedance tomography. Crit Care Med 39:2173–2176CrossRefPubMedGoogle Scholar
  5. 5.
    Electronic tattoo. Science of innovation. Accessed 1 Dec 2016
  6. 6.
    Gutierrez G, Palizas F, Doglio G et al (1992) Gastric intramucosal pH as a therapeutic index of tissue oxygenation in critically ill patients. Lancet 339:195–199CrossRefPubMedGoogle Scholar
  7. 7.
    Michard F (2016) A sneak peek into digital innovations and wearable sensors for cardiac monitoring. J Clin Monit Comput. doi:10.1007/s10877-016-9925-6
  8. 8.
    Vincent JL, Rhodes A, Perel A et al (2011) Clinical review: update on hemodynamic monitoring–a consensus of 16. Crit Care 15:229CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bartels K, Karhausen J, Clambey ET et al (2013) Perioperative organ injury. Anesthesiology 119:1474–1489CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Abenstein JP, Narr BJ (2010) An ounce of prevention may equate to a pound of cure. Can early detection and intervention prevent adverse events? Anesthesiology 112:272–273CrossRefPubMedGoogle Scholar
  11. 11.
    Chen L, Dubrawski A, Wang D et al (2016) Using supervised machine learning to classify real alerts and artifact in online multisignal vital monitoring data. Crit Care Med 44:e456–e463CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Vincent JL (2016) The future of critical care medicine: Integration and personalization. Crit Care Med 44:386–389CrossRefPubMedGoogle Scholar
  13. 13.
    Pinsky MR, Clermont G, Hravnak M (2016) Predicting cardiorespiratory instability. Crit Care 20:70CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Michard F (2013) Decision support for hemodynamic management: from graphical displays to closed loops. Anesth Analg 117:876–882CrossRefPubMedGoogle Scholar
  15. 15.
    Joosten A, Alexander B, Delaporte A et al (2015) Perioperative goal directed therapy using automated closed-loop fluid management: the future? Anaesthesiol Intensive Ther 47:517–523PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and ESICM 2017

Authors and Affiliations

  • Frederic Michard
    • 1
  • Michael R. Pinsky
    • 2
  • Jean-Louis Vincent
    • 3
  1. 1.MiCoDenensSwitzerland
  2. 2.Department of Critical Care MedicineUniversity of PittsburghPittsburghUSA
  3. 3.Department of Intensive CareErasme University HospitalBrusselsBelgium

Personalised recommendations