Intensive Care Medicine

, Volume 42, Issue 10, pp 1557–1566 | Cite as

Physical declines occurring after hospital discharge in ARDS survivors: a 5-year longitudinal study

  • Elizabeth R. Pfoh
  • Amy W. Wozniak
  • Elizabeth Colantuoni
  • Victor D. Dinglas
  • Pedro A. Mendez-Tellez
  • Carl Shanholtz
  • Nancy D. Ciesla
  • Peter J. Pronovost
  • Dale M. Needham



Survivors of acute respiratory distress syndrome (ARDS) are at high risk for new or ongoing physical declines after hospital discharge. The objective of our study was to evaluate the epidemiology of physical declines over 5-year follow-up and identify patients at risk for decline.


This multi-site prospective cohort study evaluated ARDS survivors who completed a physical status assessment at 3 or 6 months post-discharge. Three measures were evaluated: muscle strength (Medical Resource Council sumscore); exercise capacity [6-min walk test (6MWT)]; physical functioning [36-Item Short Form Health Survey (SF-36 survey)]. Patients were defined as “declined” if a comparison of their current and prior score showed a decrease that was greater than the Reliable Change Index—or if the patient died. Risk factors [pre-ARDS baseline status, intensive care unit (ICU) illness severity, and other intensive care variables] were evaluated using longitudinal, generalized linear regression models for each measure.


During the follow-up of 193 ARDS survivors (55 % male; median age 49 years), 166 (86 %) experienced decline in ≥1 physical measure (including death) and 133 (69 %) experienced a physical decline (excluding death). For all measures, age was a significant risk factor [odds ratios (OR) 1.34–1.69 per decade; p < 0.001]. Pre-ARDS comorbidity (Charlson Index) was independently associated with declines in strength and exercise capacity (OR 1.10 and 1.18, respectively; p < 0.02), and organ failure [maximum daily Sequential Organ Failure Assessment (SOFA) score in ICU] was associated with declines in strength (OR 1.06 per 1 point of SOFA score; p = 0.02).


Over the follow-up period, the majority of ARDS survivors experienced a physical decline, with older age and pre-ICU comorbidity being important risk factors for this decline.


Acute respiratory distress syndrome Intensive care unit Recovery of function Physical function 



The authors thank all patients who participated in the study and the dedicated research staff who assisted with data collection and management for the study, including Kimberly Boucher, Abdulla Damluji, Kristin Sepulveda, Faisal Siddiqi, Jennifer McGrain, Lin Chen, Alexandra Chong, Laura Methvin, Jahnavi Chatterjee, and Mariela Pinedo.

Compliance with ethical standards

Conflicts of interest

All authors declare that they have no conflict of interest to disclosure.

Sources of funding

This research was supported by the National Institutes of Health (P050HL73994, R01HL088045, and K24HL088551) along with the Johns Hopkins Institute for Clinical and Translational Research (ICTR) (UL1 TR 000424-06). Dr. Pfoh’s time was supported by an Institutional National Research Service Award (T32HP10025B0) to Johns Hopkins School of Medicine. The funder played no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and the decision to submit the manuscript for publication.

Supplementary material

134_2016_4530_MOESM1_ESM.docx (74 kb)
Supplementary material 1 (DOCX 74 kb)


  1. 1.
    Jackson JC, Mitchell N, Hopkins RO (2009) Cognitive functioning, mental health, and quality of life in ICU survivors: an overview. Crit Care Clin 25:615–628. doi: 10.1016/j.ccc.2009.04.005 CrossRefPubMedGoogle Scholar
  2. 2.
    Herridge MS, Tansey CM, Matté A et al (2011) Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med 364:1293–1304. doi: 10.1056/NEJMoa1011802 CrossRefPubMedGoogle Scholar
  3. 3.
    Dowdy DW, Eid MP, Dennison CR et al (2006) Quality of life after acute respiratory distress syndrome: a meta-analysis. Intensive Care Med 32:1115–1124. doi: 10.1007/s00134-006-0217-3 CrossRefPubMedGoogle Scholar
  4. 4.
    Desai SV, Law TJ, Needham DM (2011) Long-term complications of critical care. Crit Care Med 39:371–379. doi: 10.1097/CCM.0b013e3181fd66e5 CrossRefPubMedGoogle Scholar
  5. 5.
    Fan E, Dowdy DW, Colantuoni E et al (2014) Physical complications in acute lung injury survivors: a two-year longitudinal prospective study. Crit Care Med 42:849–859. doi: 10.1097/CCM.0000000000000040 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Iwashyna TJ (2012) Trajectories of recovery and dysfunction after acute illness, with implications for clinical trial design. Am J Respir Crit Care Med 186:302–304. doi: 10.1164/rccm.201206-1138ED CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ruhl AP, Lord RK, Panek JA et al (2015) Health care resource use and costs of two-year survivors of acute lung injury. An observational cohort study. Ann Am Thorac Soc 12:392–401. doi: 10.1513/AnnalsATS.201409-422OC CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lone NI, Gillies MA, Haddow C et al (2016) Five year mortality and hospital costs associated with surviving intensive care. Am J Respir Crit Care Med 194(2):198–208. doi: 10.1164/rccm.201511-2234OC
  9. 9.
    van Beusekom I, Bakhshi-Raiez F, de Keizer NF et al (2016) Reported burden on informal caregivers of ICU survivors: a literature review. Crit Care 20:16. doi: 10.1186/s13054-016-1185-9 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bernard GR, Artigas A, Brigham KL et al (1994) The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149:818–824Google Scholar
  11. 11.
    Needham DM, Dennison CR, Dowdy DW et al (2006) Study protocol: the improving care of acute lung injury patients (ICAP) study. Crit Care 10:R9. doi: 10.1186/cc3948 CrossRefPubMedGoogle Scholar
  12. 12.
    ARDS Definition Task Force, Ranieri VM, Rubenfeld GD et al (2012) Acute respiratory distress syndrome: the Berlin definition. JAMA 307:2526–2533 Google Scholar
  13. 13.
    Iwashyna TJ, Netzer G (2012) The burdens of survivorship: an approach to thinking about long-term outcomes after critical illness. Semin Respir Crit Care Med 33:327–338. doi: 10.1055/s-0032-1321982 CrossRefPubMedGoogle Scholar
  14. 14.
    Fan E, Ciesla ND, Truong AD et al (2010) Inter-rater reliability of manual muscle strength testing in ICU survivors and simulated patients. Intensive Care Med 36:1038–1043. doi: 10.1007/s00134-010-1796-6 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    De Jonghe B, Sharshar T, Lefaucheur J-P et al (2002) Paresis acquired in the intensive care unit: a prospective multicenter study. JAMA 288:2859–2867CrossRefPubMedGoogle Scholar
  16. 16.
    ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories (2002) ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med 166:111–117. doi: 10.1164/ajrccm.166.1.at1102 CrossRefGoogle Scholar
  17. 17.
    Chan KS, Pfoh ER, Denehy L et al (2015) Construct validity and minimal important difference of 6-minute walk distance in survivors of acute respiratory failure. Chest 147:1316–1326. doi: 10.1378/chest.14-1808 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Enright PL, Sherrill DL (1998) Reference equations for the six-minute walk in healthy adults. Am J Respir Crit Care Med 158:1384–1387. doi: 10.1164/ajrccm.158.5.9710086 CrossRefPubMedGoogle Scholar
  19. 19.
    Bienvenu OJ, Colantuoni E, Mendez-Tellez PA et al (2012) Depressive symptoms and impaired physical function after acute lung injury: a 2-year longitudinal study. Am J Respir Crit Care Med 185:517–524. doi: 10.1164/rccm.201103-0503OC CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Heyland DK, Garland A, Bagshaw SM et al (2015) Recovery after critical illness in patients aged 80 years or older: a multi-center prospective observational cohort study. Intensive Care Med 41:1911–1920. doi: 10.1007/s00134-015-4028-2 CrossRefPubMedGoogle Scholar
  21. 21.
    Jacobson NS, Truax P (1991) Clinical significance: a statistical approach to defining meaningful change in psychotherapy research. J Consult Clin Psychol 59:12–19CrossRefPubMedGoogle Scholar
  22. 22.
    Alison JA, Kenny P, King MT et al (2012) Repeatability of the six-minute walk test and relation to physical function in survivors of a critical illness. Phys Ther 92:1556–1563. doi: 10.2522/ptj.20110410 CrossRefPubMedGoogle Scholar
  23. 23.
    Needham DM, Wang W, Desai SV et al (2007) Intensive care unit exposures for long-term outcomes research: development and description of exposures for 150 patients with acute lung injury. J Crit Care 22:275–284. doi: 10.1016/j.jcrc.2007.02.001 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Charlson ME, Pompei P, Ales KL, MacKenzie CR (1987) A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 40:373–383CrossRefPubMedGoogle Scholar
  25. 25.
    Groll DL, To T, Bombardier C, Wright JG (2005) The development of a comorbidity index with physical function as the outcome. J Clin Epidemiol 58:595–602. doi: 10.1016/j.jclinepi.2004.10.018 CrossRefPubMedGoogle Scholar
  26. 26.
    Knaus WA, Draper EA, Wagner DP, Zimmerman JE (1985) APACHE II: a severity of disease classification system. Crit Care Med 13:818–829CrossRefPubMedGoogle Scholar
  27. 27.
    Vincent JL, Moreno R, Takala J et al (1996) The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med 22:707–710CrossRefPubMedGoogle Scholar
  28. 28.
    Hermans G, De Jonghe B, Bruyninckx F, Van den Berghe G (2009) Interventions for preventing critical illness polyneuropathy and critical illness myopathy. Cochrane Database Syst Rev (1):CD006832. doi: 10.1002/14651858.CD006832.pub2
  29. 29.
    Wilson WC, Smedira NG, Fink C et al (1992) Ordering and administration of sedatives and analgesics during the withholding and withdrawal of life support from critically ill patients. JAMA 267:949–953CrossRefPubMedGoogle Scholar
  30. 30.
    Jacobi J, Fraser GL, Coursin DB et al (2002) Clinical practice guidelines for the sustained use of sedatives and analgesics in the critically ill adult. Crit Care Med 30:119–141CrossRefPubMedGoogle Scholar
  31. 31.
    Brunton L, Chabner B, Knollman B (2011) Goodman and Gilman’s the pharmacological basis of therapeutics, 12th edn. McGraw Hill Educational, New YorkGoogle Scholar
  32. 32.
    Ely EW, Truman B, Shintani A et al (2003) Monitoring sedation status over time in ICU patients: reliability and validity of the Richmond Agitation-Sedation Scale (RASS). JAMA 289:2983–2991. doi: 10.1001/jama.289.22.2983 CrossRefPubMedGoogle Scholar
  33. 33.
    Ely EW, Inouye SK, Bernard GR et al (2001) Delirium in mechanically ventilated patients: validity and reliability of the confusion assessment method for the intensive care unit (CAM-ICU). JAMA 286:2703–2710CrossRefPubMedGoogle Scholar
  34. 34.
    Schafer JL, Graham JW (2002) Missing data: our view of the state of the art. Psychol Methods 7:147–177CrossRefPubMedGoogle Scholar
  35. 35.
    Bienvenu OJ, Gellar J, Althouse BM et al (2013) Post-traumatic stress disorder symptoms after acute lung injury: a 2-year prospective longitudinal study. Psychol Med 43:2657–2671. doi: 10.1017/S0033291713000214 CrossRefPubMedGoogle Scholar
  36. 36.
    Swihart BJ, Caffo B, James BD et al (2010) Lasagna plots: a saucy alternative to spaghetti plots. Epidemiology 21:621–625. doi: 10.1097/EDE.0b013e3181e5b06a CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Hardin JW, Hilbe JM, Hilbe J (2007) Generalized linear models and extensions, 2nd edn. STATA Press, College StationGoogle Scholar
  38. 38.
    Ferrante LE, Pisani MA, Murphy TE et al (2015) Functional trajectories among older persons before and after critical illness. JAMA Intern Med 175:523–529. doi: 10.1001/jamainternmed.2014.7889 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Ferrante LE, Pisani MA, Murphy TE et al (2016) Factors associated with functional recovery among older ICU survivors. Am J Respir Crit Care Med. doi: 10.1164/rccm.201506-1256OC (rccm.201506–1256OC)Google Scholar
  40. 40.
    Herridge MS (2011) The challenge of designing a post-critical illness rehabilitation intervention. Crit Care 15:1002. doi: 10.1186/cc10362 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Herridge MS, Chu LM, Matté A et al (2016) The recover program: disability risk groups & 1 year outcome after ≥7 days of mechanical ventilation. Am J Respir Crit Care Med. doi: 10.1164/rccm.201512-2343OC Google Scholar
  42. 42.
    Howden LM, Meyer JA (2010) Age and sex composition: 2010. 2010 census briefs. U.S. Department of Commerce Economics and Statistics Administration U.S. Census Bureau. doi:  10.1234/12345678. Available at:
  43. 43.
    Rechel B, Grundy E, Robine JM et al (2013) Ageing in the European Union. Lancet 381:1312–1322. doi: 10.1016/S0140-6736(12)62087-X CrossRefPubMedGoogle Scholar
  44. 44.
    Elliott D, McKinley S, Alison J et al (2011) Health-related quality of life and physical recovery after a critical illness: a multi-centre randomised controlled trial of a home-based physical rehabilitation program. Crit Care 15:R142. doi: 10.1186/cc10265 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Walsh TS, Salisbury LG, Merriweather JL et al (2015) Increased hospital-based physical rehabilitation and information provision after intensive care unit discharge: the recover randomized clinical trial. JAMA Intern Med 175:901–910. doi: 10.1001/jamainternmed.2015.0822 CrossRefPubMedGoogle Scholar
  46. 46.
    Legrand D, Vaes B, Matheï C et al (2014) Muscle strength and physical performance as predictors of mortality, hospitalization, and disability in the oldest old. J Am Geriatr Soc 62:1030–1038. doi: 10.1111/jgs.12840 CrossRefPubMedGoogle Scholar
  47. 47.
    Hermans G, Van Mechelen H, Clerckx B et al (2014) Acute outcomes and 1-year mortality of intensive care unit-acquired weakness. A cohort study and propensity-matched analysis. Am J Respir Crit Care Med 190:410–420. doi: 10.1164/rccm.201312-2257OC CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and ESICM 2016

Authors and Affiliations

  • Elizabeth R. Pfoh
    • 1
    • 2
  • Amy W. Wozniak
    • 3
  • Elizabeth Colantuoni
    • 3
    • 4
  • Victor D. Dinglas
    • 4
    • 5
  • Pedro A. Mendez-Tellez
    • 4
    • 6
  • Carl Shanholtz
    • 7
  • Nancy D. Ciesla
    • 4
  • Peter J. Pronovost
    • 4
    • 6
    • 8
    • 9
  • Dale M. Needham
    • 4
    • 5
    • 10
  1. 1.Center for Value-Based Care Research, Medicine Institute Cleveland Clinic FoundationClevelandUSA
  2. 2.Division of General Internal MedicineJohns Hopkins University School of MedicineBaltimoreUSA
  3. 3.Department of BiostatisticsJohns Hopkins University Bloomberg School of Public HealthBaltimoreUSA
  4. 4.Outcomes After Critical Illness and Surgery (OACIS) GroupJohns Hopkins University School of MedicineBaltimoreUSA
  5. 5.Division of Pulmonary and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreUSA
  6. 6.Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreUSA
  7. 7.Division of Pulmonary and Critical Care MedicineUniversity of Maryland School of MedicineBaltimoreUSA
  8. 8.Department of Health Policy and ManagementJohns Hopkins Bloomberg School of Public HealthBaltimoreUSA
  9. 9.Armstrong Institute for Patient Safety and Quality Johns Hopkins University School of MedicineBaltimoreUSA
  10. 10.Department of Physical Medicine and RehabilitationJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations