Intensive Care Medicine

, Volume 42, Issue 11, pp 1723–1732 | Cite as

Neurally adjusted ventilatory assist as an alternative to pressure support ventilation in adults: a French multicentre randomized trial

  • A. Demoule
  • M. Clavel
  • C. Rolland-Debord
  • S. Perbet
  • N. Terzi
  • A. Kouatchet
  • F. Wallet
  • H. Roze
  • F. Vargas
  • C. Guerin
  • J. Dellamonica
  • S. Jaber
  • L. Brochard
  • T. Similowski
Original

Abstract

Purpose

Neurally adjusted ventilatory assist (NAVA) is a ventilatory mode that tailors the level of assistance delivered by the ventilator to the electromyographic activity of the diaphragm. The objective of this study was to compare NAVA and pressure support ventilation (PSV) in the early phase of weaning from mechanical ventilation.

Methods

A multicentre randomized controlled trial of 128 intubated adults recovering from acute respiratory failure was conducted in 11 intensive care units. Patients were randomly assigned to NAVA or PSV. The primary outcome was the probability of remaining in a partial ventilatory mode (either NAVA or PSV) throughout the first 48 h without any return to assist-control ventilation. Secondary outcomes included asynchrony index, ventilator-free days and mortality.

Results

In the NAVA and PSV groups respectively, the proportion of patients remaining in partial ventilatory mode throughout the first 48 h was 67.2 vs. 63.3 % (P = 0.66), the asynchrony index was 14.7 vs. 26.7 % (P < 0.001), the ventilator-free days at day 7 were 1.0 day [1.0–4.0] vs. 0.0 days [0.0–1.0] (P < 0.01), the ventilator-free days at day 28 were 21 days [4–25] vs. 17 days [0–23] (P = 0.12), the day-28 mortality rate was 15.0 vs. 22.7 % (P = 0.21) and the rate of use of post-extubation noninvasive mechanical ventilation was 43.5 vs. 66.6 % (P < 0.01).

Conclusions

NAVA is safe and feasible over a prolonged period of time but does not increase the probability of remaining in a partial ventilatory mode. However, NAVA decreases patient–ventilator asynchrony and is associated with less frequent application of post-extubation noninvasive mechanical ventilation.

Trial Registration. clinicaltrials.gov Identifier: NCT02018666.

Keywords

Mechanical ventilation Weaning Neurally adjusted ventilatory assist Patient–ventilator asynchrony Ventilator-free days Noninvasive ventilation 

Supplementary material

134_2016_4447_MOESM1_ESM.docx (41 kb)
Supplementary material 1 (DOCX 41 kb)

References

  1. 1.
    Esteban A, Frutos-Vivar F, Muriel A, Ferguson ND, Penuelas O, Abraira V, Raymondos K, Rios F, Nin N, Apezteguia C, Violi DA, Thille AW, Brochard L, Gonzalez M, Villagomez AJ, Hurtado J, Davies AR, Du B, Maggiore SM, Pelosi P, Soto L, Tomicic V, D’Empaire G, Matamis D, Abroug F, Moreno RP, Soares MA, Arabi Y, Sandi F, Jibaja M, Amin P, Koh Y, Kuiper MA, Bulow HH, Zeggwagh AA, Anzueto A (2013) Evolution of mortality over time in patients receiving mechanical ventilation. Am J Respir Crit Care Med 188:220–230CrossRefPubMedGoogle Scholar
  2. 2.
    Slutsky AS, Ranieri VM (2013) Ventilator-induced lung injury. N Engl J Med 369:2126–2136CrossRefPubMedGoogle Scholar
  3. 3.
    Schmidt M, Banzett RB, Raux M, Morelot-Panzini C, Dangers L, Similowski T, Demoule A (2014) Unrecognized suffering in the ICU: addressing dyspnea in mechanically ventilated patients. Intensive Care Med 40:1–10CrossRefPubMedGoogle Scholar
  4. 4.
    Schmidt M, Kindler F, Gottfried SB, Raux M, Hug F, Similowski T, Demoule A (2013) Dyspnea and surface inspiratory electromyograms in mechanically ventilated patients. Intensive Care Med 39:1368–1376CrossRefPubMedGoogle Scholar
  5. 5.
    Thille AW, Rodriguez P, Cabello B, Lellouche F, Brochard L (2006) Patient–ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med 32:1515–1522CrossRefPubMedGoogle Scholar
  6. 6.
    Schmidt M, Kindler F, Cecchini J, Poitou T, Morawiec E, Persichini R, Similowski T, Demoule A (2015) Neurally adjusted ventilatory assist and proportional assist ventilation both improve patient–ventilator interaction. Crit Care 19:56CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Piquilloud L, Vignaux L, Bialais E, Roeseler J, Sottiaux T, Laterre PF, Jolliet P, Tassaux D (2010) Neurally adjusted ventilatory assist improves patient–ventilator interaction. Intensive Care Med 37:263–271Google Scholar
  8. 8.
    Coisel Y, Chanques G, Jung B, Constantin JM, Capdevila X, Matecki S, Grasso S, Jaber S (2010) Neurally adjusted ventilatory assist in critically ill postoperative patients: a crossover randomized study. Anesthesiology 113:925–935CrossRefPubMedGoogle Scholar
  9. 9.
    Schmidt M, Demoule A, Cracco C, Gharbi A, Fiamma MN, Straus C, Duguet A, Gottfried SB, Similowski T (2010) Neurally adjusted ventilatory assist increases respiratory variability and complexity in acute respiratory failure. Anesthesiology 112:670–681CrossRefPubMedGoogle Scholar
  10. 10.
    American Thoracic Society, Infectious Diseases Society of America (2005) Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med 171:388–416CrossRefGoogle Scholar
  11. 11.
    De Jonghe B, Cook D, Griffith L, Appere-de-Vecchi C, Guyatt G, Theron V, Vagnerre A, Outin H (2003) Adaptation to the Intensive Care Environment (ATICE): development and validation of a new sedation assessment instrument. Crit Care Med 31:2344–2354CrossRefPubMedGoogle Scholar
  12. 12.
    Xirouchaki N, Kondili E, Vaporidi K, Xirouchakis G, Klimathianaki M, Gavriilidis G, Alexandopoulou E, Plataki M, Alexopoulou C, Georgopoulos D (2008) Proportional assist ventilation with load-adjustable gain factors in critically ill patients: comparison with pressure support. Intensive Care Med 34:2026–2034CrossRefPubMedGoogle Scholar
  13. 13.
    Sinderby C, Navalesi P, Beck J, Skrobik Y, Comtois N, Friberg S, Gottfried SB, Lindstrom L (1999) Neural control of mechanical ventilation in respiratory failure. Nat Med 5:1433–1436CrossRefPubMedGoogle Scholar
  14. 14.
    Tuchscherer D, Z’Graggen WJ, Passath C, Takala J, Sinderby C, Brander L (2011) Neurally adjusted ventilatory assist in patients with critical illness-associated polyneuromyopathy. Intensive Care Med 37:1951–1961CrossRefPubMedGoogle Scholar
  15. 15.
    Cereda M, Foti G, Marcora B, Gili M, Giacomini M, Sparacino ME, Pesenti A (2000) Pressure support ventilation in patients with acute lung injury. Crit Care Med 28:1269–1275CrossRefPubMedGoogle Scholar
  16. 16.
    Blanch L, Villagra A, Sales B, Montanya J, Lucangelo U, Lujan M, Garcia-Esquirol O, Chacon E, Estruga A, Oliva JC, Hernandez-Abadia A, Albaiceta GM, Fernandez-Mondejar E, Fernandez R, Lopez-Aguilar J, Villar J, Murias G, Kacmarek RM (2015) Asynchronies during mechanical ventilation are associated with mortality. Intensive Care Med 41:633–641CrossRefPubMedGoogle Scholar
  17. 17.
    de Wit M, Miller KB, Green DA, Ostman HE, Gennings C, Epstein SK (2009) Ineffective triggering predicts increased duration of mechanical ventilation. Crit Care Med 37:2740–2745CrossRefPubMedGoogle Scholar
  18. 18.
    Spahija J, de Marchie M, Albert M, Bellemare P, Delisle S, Beck J, Sinderby C (2010) Patient–ventilator interaction during pressure support ventilation and neurally adjusted ventilatory assist. Crit Care Med 38:518–526CrossRefPubMedGoogle Scholar
  19. 19.
    Brander L, Leong-Poi H, Beck J, Brunet F, Hutchison SJ, Slutsky AS, Sinderby C (2009) Titration and implementation of neurally adjusted ventilatory assist in critically ill patients. Chest 135:695–703CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and ESICM 2016

Authors and Affiliations

  • A. Demoule
    • 1
    • 2
  • M. Clavel
    • 3
  • C. Rolland-Debord
    • 1
    • 2
  • S. Perbet
    • 4
    • 5
  • N. Terzi
    • 6
    • 7
  • A. Kouatchet
    • 8
  • F. Wallet
    • 9
    • 10
  • H. Roze
    • 11
  • F. Vargas
    • 12
  • C. Guerin
    • 13
  • J. Dellamonica
    • 14
    • 15
  • S. Jaber
    • 16
    • 17
  • L. Brochard
    • 18
    • 19
  • T. Similowski
    • 1
    • 2
  1. 1.Service de Pneumologie et Réanimation Médicale (Département “R3S”), Groupe Hospitalier Pitié-Salpêtrière Charles FoixAP-HPParisFrance
  2. 2.Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et CliniqueParisFrance
  3. 3.Réanimation PolyvalenteHôpital DupuytrenLimogesFrance
  4. 4.Réanimation Médico-ChirurgicaleCHU de Clermont-FerrandClermont-FerrandFrance
  5. 5.R2D2 EA-7281, Université d’AuvergneClermont-FerrandFrance
  6. 6.INSERM U1042, Université Grenoble-Alpes, HP2GrenobleFrance
  7. 7.Service de Réanimation MédicaleCHU Grenoble AlpesGrenobleFrance
  8. 8.Service de Réanimation Médicale et Médecine HyperbareCHU d’Angers, AngersAngersFrance
  9. 9.Réanimation Médicale et ChirurgicaleCentre Hospitalier Lyon-SudLyonFrance
  10. 10.Laboratoire des Pathogènes Emergents, Centre International de Recherche en InfectiologieInserm U1111, CNRS UMR5308, ENS de Lyon, UCBL1LyonFrance
  11. 11.Anesthésie et RéanimationCHU de BordeauxPessacFrance
  12. 12.Réanimation MédicaleHôpital Pellegrin-TripodeBordeauxFrance
  13. 13.Réanimation MédicaleHôpital de la Croix RousseLyonFrance
  14. 14.Réanimation Médicale, Hôpital de l’ArchetCentre Hospitalier Universitaire de NiceNiceFrance
  15. 15.INSERM 1065 Team 3 C3 MNiceFrance
  16. 16.Anesthésie et RéanimationHôpital Saint-EloiMontpellierFrance
  17. 17.Montpellier School of MedicineUniversity of Montpellier, INSERM U1046, CNRS UMR 9214MontpellierFrance
  18. 18.Keenan Research Centre and Li Ka Shing InstituteSaint-Michael’s HospitalTorontoCanada
  19. 19.Interdepartmental Division of Critical Care MedicineUniversity of TorontoTorontoCanada

Personalised recommendations