Intensive Care Medicine

, Volume 42, Issue 9, pp 1360–1373 | Cite as

Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives

  • Tommaso Mauri
  • Takeshi Yoshida
  • Giacomo Bellani
  • Ewan C. Goligher
  • Guillaume Carteaux
  • Nuttapol Rittayamai
  • Francesco Mojoli
  • Davide Chiumello
  • Lise Piquilloud
  • Salvatore Grasso
  • Amal Jubran
  • Franco Laghi
  • Sheldon Magder
  • Antonio Pesenti
  • Stephen Loring
  • Luciano Gattinoni
  • Daniel Talmor
  • Lluis Blanch
  • Marcelo Amato
  • Lu Chen
  • Laurent Brochard
  • Jordi Mancebo
  • the PLeUral pressure working Group (PLUG—Acute Respiratory Failure section of the European Society of Intensive Care Medicine)
Review

Abstract

Purpose

Esophageal pressure (Pes) is a minimally invasive advanced respiratory monitoring method with the potential to guide management of ventilation support and enhance specific diagnoses in acute respiratory failure patients. To date, the use of Pes in the clinical setting is limited, and it is often seen as a research tool only.

Methods

This is a review of the relevant technical, physiological and clinical details that support the clinical utility of Pes.

Results

After appropriately positioning of the esophageal balloon, Pes monitoring allows titration of controlled and assisted mechanical ventilation to achieve personalized protective settings and the desired level of patient effort from the acute phase through to weaning. Moreover, Pes monitoring permits accurate measurement of transmural vascular pressure and intrinsic positive end-expiratory pressure and facilitates detection of patient–ventilator asynchrony, thereby supporting specific diagnoses and interventions. Finally, some Pes-derived measures may also be obtained by monitoring electrical activity of the diaphragm.

Conclusions

Pes monitoring provides unique bedside measures for a better understanding of the pathophysiology of acute respiratory failure patients. Including Pes monitoring in the intensivist’s clinical armamentarium may enhance treatment to improve clinical outcomes.

Keywords

Esophageal pressure Acute respiratory failure Acute respiratory distress syndrome Physiologic monitoring Mechanical ventilation 

Supplementary material

134_2016_4400_MOESM1_ESM.docx (865 kb)
Supplementary material 1 (DOCX 865 kb)

Supplementary material 2 (MP4 277228 kb)

References

  1. 1.
    Akoumianaki E, Maggiore SM, Valenza F et al (2014) The application of esophageal pressure measurement in patients with respiratory failure. Am J Respir Crit Care Med 189:520–531CrossRefPubMedGoogle Scholar
  2. 2.
    Brochard L (2014) Measurement of esophageal pressure at bedside: pros and cons. Curr Opin Crit Care 20:39–46CrossRefPubMedGoogle Scholar
  3. 3.
    Milic-Emili J, Mead J, Turner JM, Glauser EM (1964) Improved technique for estimating pleural pressure from esophageal balloons. J Appl Physiol 19:207–211PubMedGoogle Scholar
  4. 4.
    Mojoli F, Chiumello D, Pozzi M et al (2015) Esophageal pressure measurements under different conditions of intrathoracic pressure. An in vitro study of second generation balloon catheters. Minerva Anestesiol 81(8):855–864PubMedGoogle Scholar
  5. 5.
    Walterspacher S, Isaak L, Guttmann J et al (2014) Assessing respiratory function depends on mechanical characteristics of balloon catheters. Respir Care 59:1345–1352CrossRefPubMedGoogle Scholar
  6. 6.
    Mojoli F, Iotti GA, Torriglia F et al (2016) In vivo calibration of esophageal pressure in the mechanically ventilated patient makes measurements reliable. Crit Care 20(1):98CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Milic-Emili J, Mead J, Turner JM (1964) Topography of esophageal pressure as a function of posture in man. J Appl Physiol 19:212–216PubMedGoogle Scholar
  8. 8.
    Baydur A, Behrakis PK, Zin WA et al (1982) A simple method for assessing the validity of the esophageal balloon technique. Am Rev Respir Dis 126:788–791PubMedGoogle Scholar
  9. 9.
    Higgs BD, Behrakis PK, Bevan DR, Milic-Emili J (1983) Measurement of pleural pressure with esophageal balloon in anesthetized humans. Anesthesiology 59:340–343CrossRefPubMedGoogle Scholar
  10. 10.
    Chiumello D, Consonni D, Coppola S et al (2016) The occlusion tests and end-expiratory esophageal pressure: measurements and comparison in controlled and assisted ventilation. Ann Intensive Care. 6(1):13CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Niknam J, Chandra A, Adams AB, Nahum A, Ravenscraft SA, Marini JJ (1994) Effect of a nasogastric tube on esophageal pressure measurement in normal adults. Chest 106(1):137–141CrossRefPubMedGoogle Scholar
  12. 12.
    Gattinoni L, Carlesso E, Cadringher P et al (2003) Physical and biological triggers of ventilator-induced lung injury and its prevention. Eur Respir J Suppl 47:15s–25sCrossRefPubMedGoogle Scholar
  13. 13.
    Protti A, Andreis DT, Monti M et al (2013) Lung stress and strain during mechanical ventilation: any difference between statics and dynamics? Crit Care Med 41:1046–1055CrossRefPubMedGoogle Scholar
  14. 14.
    Grasso S, Terragni P, Birocco A et al (2012) ECMO criteria for influenza A (H1N1)-associated ARDS: role of transpulmonary pressure. Intensive Care Med 38:395–403CrossRefPubMedGoogle Scholar
  15. 15.
    Chiumello D, Carlesso E, Cadringher P et al (2008) Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med 178:346–355CrossRefPubMedGoogle Scholar
  16. 16.
    Moreira LF, Aires ST, Gobbi CF et al (1995) Respiratory system, lung, and chest wall mechanics after longitudinal laparotomy in rats. Eur Respir J 8:105–108CrossRefPubMedGoogle Scholar
  17. 17.
    Protti A, Cressoni M, Santini A et al (2011) Lung stress and strain during mechanical ventilation: any safe threshold? Am J Respir Crit Care Med 183:1354–1362CrossRefPubMedGoogle Scholar
  18. 18.
    Cressoni M, Cadringher P, Chiurazzi C et al (2014) Lung inhomogeneity in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 189(2):149–158PubMedGoogle Scholar
  19. 19.
    Washko GR, O’Donnell CR, Loring SH (2006) Volume-related and volume-independent effects of posture on esophageal and transpulmonary pressures in healthy subjects. J Appl Physiol 100:753–758CrossRefPubMedGoogle Scholar
  20. 20.
    Pelosi P, Goldner M, McKibben A et al (2001) Recruitment and derecruitment during acute respiratory failure: an experimental study. Am J Respir Crit Care Med 164:122–130CrossRefPubMedGoogle Scholar
  21. 21.
    Slutsky AS, Ranieri VM (2013) Ventilator-induced lung injury. N Engl J Med 369:2126–2136CrossRefPubMedGoogle Scholar
  22. 22.
    Talmor D, Sarge T, O’Donnell CR et al (2006) Esophageal and transpulmonary pressures in acute respiratory failure. Crit Care Med 34:1389–1394CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Talmor D, Sarge T, Malhotra A et al (2008) Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med 359:2095–2104CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Loring SH, Pecchiari M, Della Valle P et al (2010) Maintaining end-expiratory transpulmonary pressure prevents worsening of ventilator-induced lung injury caused by chest wall constriction in surfactant-depleted rats. Crit Care Med 38:2358–2364CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Magder S (2015) Invasive hemodynamic monitoring. Crit Care Clin 31:67–87CrossRefPubMedGoogle Scholar
  26. 26.
    Jardin F, Farcot JC, Boisante L, Curien N, Margairaz A, Bourdarias JP (1981) Influence of positive end-expiratory pressure on left ventricular performance. N Engl J Med 304:387–392CrossRefPubMedGoogle Scholar
  27. 27.
    Marini JJ, Culver BH, Butler J (1981) Mechanical effect of lung distention with positive pressure on cardiac function. Am Rev Respir Dis 124:382–386PubMedGoogle Scholar
  28. 28.
    Nanas S, Magder S (1992) Adaptations of the peripheral circulation to PEEP. Am Rev Respir Dis 146:688–693CrossRefPubMedGoogle Scholar
  29. 29.
    Lemaire F, Teboul JL, Cinotti L et al (1988) Acute left ventricular dysfunction during unsuccessful weaning from mechanical ventilation. Anesthesiology 69:171–179CrossRefPubMedGoogle Scholar
  30. 30.
    McGregor M (1979) Current concepts: pulsus paradoxus. N Engl J Med 301:480–482CrossRefPubMedGoogle Scholar
  31. 31.
    Magder SA, Lichtenstein S, Adelman AG (1983) Effect of negative pleural pressure on left ventricular hemodynamics. Am J Cardiol 52:588–593CrossRefPubMedGoogle Scholar
  32. 32.
    Buda AJ, Pinsky MR, Ingels NB et al (1979) Effect of intrathoracic pressure on left ventricular performance. N Engl J Med 301:453–459CrossRefPubMedGoogle Scholar
  33. 33.
    Putensen C, Muders T, Varelmann D, Wrigge H (2006) The impact of spontaneous breathing during mechanical ventilation. Curr Opin Crit Care 12:13–18CrossRefPubMedGoogle Scholar
  34. 34.
    Putensen C, Zech S, Wrigge H et al (2001) Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med 164:43–49CrossRefPubMedGoogle Scholar
  35. 35.
    Yoshida T, Uchiyama A, Matsuura N et al (2013) The comparison of spontaneous breathing and muscle paralysis in two different severities of experimental lung injury. Crit Care Med 41:536–545CrossRefPubMedGoogle Scholar
  36. 36.
    Papazian L, Forel J-M, Gacouin A et al (2010) Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med 363:1107–1116CrossRefPubMedGoogle Scholar
  37. 37.
    Yoshida T, Torsani V, Gomes S et al (2013) Spontaneous effort causes occult pendelluft during mechanical ventilation. Am J Respir Crit Care Med 188:1420–1427CrossRefPubMedGoogle Scholar
  38. 38.
    Colebatch HJ, Greaves IA, Ng CK (1979) Exponential analysis of elastic recoil and aging in healthy males and females. J Appl Physiol 47:683–691PubMedGoogle Scholar
  39. 39.
    Carteaux G, Mancebo J, Mercat A et al (2013) Bedside adjustment of proportional assist ventilation to target a predefined range of respiratory effort. Crit Care Med 41:2125–2132CrossRefPubMedGoogle Scholar
  40. 40.
    Mead J, Smith JC, Loring SH (1985) Volume displacements of the chest wall and their mechanical significance. In: Roussos C, Macklem PT (eds) The thorax: Part A. M Dekker, New York, pp 369–392Google Scholar
  41. 41.
    Mancebo J, Isabey D, Lorino H et al (1995) Comparative effects of pressure support ventilation and intermittent positive pressure breathing (IPPB) in non-intubated healthy subjects. Eur Respir J 8:1901–1909CrossRefPubMedGoogle Scholar
  42. 42.
    Sassoon CS, Light RW, Lodia R et al (1991) Pressure-time product during continuous positive airway pressure, pressure support ventilation, and T-piece during weaning from mechanical ventilation. Am Rev Respir Dis 143:469–475CrossRefPubMedGoogle Scholar
  43. 43.
    Lessard MR, Lofaso F, Brochard L (1995) Expiratory muscle activity increases intrinsic positive end-expiratory pressure independently of dynamic hyperinflation in mechanically ventilated patients. Am J Respir Crit Care Med 151:562–569CrossRefPubMedGoogle Scholar
  44. 44.
    Hussain SN, Graham R, Rutledge F, Roussos C (1986) Respiratory muscle energetics during endotoxic shock in dogs. J Appl Physiol 60:486–493PubMedGoogle Scholar
  45. 45.
    Goligher EC, Fan E, Herridge MS et al (2015) Evolution of diaphragm thickness during mechanical ventilation. Impact of inspiratory effort. Am J Respir Crit Care Med 192:1080–1088CrossRefPubMedGoogle Scholar
  46. 46.
    Levine S, Nguyen T, Taylor N et al (2008) Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med 358:1327–1335CrossRefPubMedGoogle Scholar
  47. 47.
    Reid WD, Belcastro AN (2000) Time course of diaphragm injury and calpain activity during resistive loading. Am J Respir Crit Care Med 162:1801–1806CrossRefPubMedGoogle Scholar
  48. 48.
    Orozco-Levi M, Lloreta J, Minguella J, Serrano S, Broquetas JM, Gea J (2001) Injury of the human diaphragm associated with exertion and chronic obstructive pulmonary disease. Am J Respir Crit Care Med 164:1734–1739CrossRefPubMedGoogle Scholar
  49. 49.
    Ebihara S, Hussain SN, Danialou G, Cho WK, Gottfried SB, Petrof BJ (2002) Mechanical ventilation protects against diaphragm injury in sepsis: interaction of oxidative and mechanical stresses. Am J Respir Crit Care Med 165(2):221–228CrossRefPubMedGoogle Scholar
  50. 50.
    Chao DC, Scheinhorn DJ, Stearn-Hassenpflug M (1997) Patient-ventilator trigger asynchrony in prolonged mechanical ventilation. Chest 112:1592–1599CrossRefPubMedGoogle Scholar
  51. 51.
    de Wit M, Miller KB, Green DA et al (2009) Ineffective triggering predicts increased duration of mechanical ventilation. Crit Care Med 37:2740–2745CrossRefPubMedGoogle Scholar
  52. 52.
    Thille AW, Rodriguez P, Cabello B et al (2006) Patient–ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med 32:1515–1522CrossRefPubMedGoogle Scholar
  53. 53.
    Blanch L, Villagra A, Sales B et al (2015) Asynchronies during mechanical ventilation are associated with mortality. Intensive Care Med 41:633–641CrossRefPubMedGoogle Scholar
  54. 54.
    Thille AW, Cabello B, Galia F et al (2008) Reduction of patient–ventilator asynchrony by reducing tidal volume during pressure-support ventilation. Intensive Care Med 34:1477–1486CrossRefPubMedGoogle Scholar
  55. 55.
    Colombo D, Cammarota G, Alemani M et al (2011) Efficacy of ventilator waveforms observation in detecting patient–ventilator asynchrony. Crit Care Med 39:2452–2457CrossRefPubMedGoogle Scholar
  56. 56.
    Younes M, Brochard L, Grasso S et al (2007) A method for monitoring and improving patient:ventilator interaction. Intensive Care Med 33:1337–1346CrossRefPubMedGoogle Scholar
  57. 57.
    Blanch L, Sales B, Montanya J et al (2012) Validation of the Better Care® system to detect ineffective efforts during expiration in mechanically ventilated patients: a pilot study. Intensive Care Med 38:772–780CrossRefPubMedGoogle Scholar
  58. 58.
    Sinderby C, Liu S, Colombo D et al (2013) An automated and standardized neural index to quantify patient–ventilator interaction. Crit Care 17:R239CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Akoumianaki E, Lyazidi A, Rey N et al (2013) Mechanical ventilation-induced reverse-triggered breaths: a frequently unrecognized form of neuromechanical coupling. Chest 143:927–938CrossRefPubMedGoogle Scholar
  60. 60.
    Jubran A, Tobin MJ (1997) Pathophysiologic basis of acute respiratory distress in patients who fail a trial of weaning from mechanical ventilation. Am J Respir Crit Care Med 155:906–915CrossRefPubMedGoogle Scholar
  61. 61.
    Tobin MJ, Laghi F, Jubran A (2012) Ventilatory failure, ventilator support, and ventilator weaning. Compr Physiol 2:2871–2921PubMedGoogle Scholar
  62. 62.
    Laghi F, Cattapan SE, Jubran A et al (2003) Is weaning failure caused by low-frequency fatigue of the diaphragm? Am J Respir Crit Care Med 167:120–127CrossRefPubMedGoogle Scholar
  63. 63.
    Jubran A, Mathru M, Dries D, Tobin MJ (1998) Continuous recordings of mixed venous oxygen saturation during weaning from mechanical ventilation and the ramifications thereof. Am J Respir Crit Care Med 158:1763–1769CrossRefPubMedGoogle Scholar
  64. 64.
    Cabello B, Thille AW, Roche-Campo F et al (2010) Physiological comparison of three spontaneous breathing trials in difficult-to-wean patients. Intensive Care Med 36:1171–1179CrossRefPubMedGoogle Scholar
  65. 65.
    Jubran A, Grant BJB, Laghi F et al (2005) Weaning prediction: esophageal pressure monitoring complements readiness testing. Am J Respir Crit Care Med 171:1252–1259CrossRefPubMedGoogle Scholar
  66. 66.
    Sinderby C, Navalesi P, Beck J et al (1999) Neural control of mechanical ventilation in respiratory failure. Nat Med 5:1433–1436CrossRefPubMedGoogle Scholar
  67. 67.
    Beck J, Sinderby C, Lindström L, Grassino A (1998) Crural diaphragm activation during dynamic contractions at various inspiratory flow rates. J Appl Physiol 85:451–458PubMedGoogle Scholar
  68. 68.
    Beck J, Sinderby C, Lindström L, Grassino A (1998) Effects of lung volume on diaphragm EMG signal strength during voluntary contractions. J Appl Physiol 85:1123–1134PubMedGoogle Scholar
  69. 69.
    Sinderby C, Beck J, Spahija J et al (1998) Voluntary activation of the human diaphragm in health and disease. J Appl Physiol 85:2146–2158PubMedGoogle Scholar
  70. 70.
    Beck J, Gottfried SB, Navalesi P et al (2001) Electrical activity of the diaphragm during pressure support ventilation in acute respiratory failure. Am J Respir Crit Care Med 164:419–424CrossRefPubMedGoogle Scholar
  71. 71.
    Mauri T, Grasselli G, Suriano G et al (2016) Control of respiratory drive and effort in extracorporeal membrane oxygenation patients recovering from severe acute respiratory distress syndrome. Anesthesiology. doi:10.1097/ALN.0000000000001103
  72. 72.
    Sinderby C, Spahija J, Beck J et al (2001) Diaphragm activation during exercise in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 163:1637–1641CrossRefPubMedGoogle Scholar
  73. 73.
    Bellani G, Mauri T, Coppadoro A et al (2013) Estimation of patient’s inspiratory effort from the electrical activity of the diaphragm. Crit Care Med 41:1483–1491CrossRefPubMedGoogle Scholar
  74. 74.
    Liu L, Liu S, Xie J et al (2015) Assessment of patient–ventilator breath contribution during neurally adjusted ventilatory assist in patients with acute respiratory failure. Crit Care 19:43CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Vaschetto R, Cammarota G, Colombo D et al (2014) Effects of propofol on patient–ventilator synchrony and interaction during pressure support ventilation and neurally adjusted ventilatory assist. Crit Care Med 42:74–82CrossRefPubMedGoogle Scholar
  76. 76.
    Mauri T, Bellani G, Foti G et al (2011) Successful use of neurally adjusted ventilatory assist in a patient with extremely low respiratory system compliance undergoing ECMO. Intensive Care Med 37(1):166–167CrossRefPubMedGoogle Scholar
  77. 77.
    Bellani G, Coppadoro A, Patroniti N et al (2014) Clinical assessment of auto-positive end-expiratory pressure by diaphragmatic electrical activity during pressure support and neurally adjusted ventilatory assist. Anesthesiology 121:563–571CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and ESICM 2016

Authors and Affiliations

  • Tommaso Mauri
    • 1
  • Takeshi Yoshida
    • 2
    • 3
    • 4
  • Giacomo Bellani
    • 5
  • Ewan C. Goligher
    • 6
    • 7
    • 12
  • Guillaume Carteaux
    • 8
    • 9
  • Nuttapol Rittayamai
    • 10
    • 11
    • 12
  • Francesco Mojoli
    • 13
  • Davide Chiumello
    • 1
    • 14
  • Lise Piquilloud
    • 15
    • 16
  • Salvatore Grasso
    • 17
  • Amal Jubran
    • 18
  • Franco Laghi
    • 18
  • Sheldon Magder
    • 19
  • Antonio Pesenti
    • 1
    • 14
  • Stephen Loring
    • 20
  • Luciano Gattinoni
    • 1
    • 14
  • Daniel Talmor
    • 20
  • Lluis Blanch
    • 21
  • Marcelo Amato
    • 22
  • Lu Chen
    • 11
    • 12
  • Laurent Brochard
    • 11
    • 12
  • Jordi Mancebo
    • 23
  • the PLeUral pressure working Group (PLUG—Acute Respiratory Failure section of the European Society of Intensive Care Medicine)
  1. 1.Department of Anesthesia, Critical Care and EmergencyFondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
  2. 2.Department of Critical Care Medicine, Hospital for Sick ChildrenUniversity of TorontoTorontoCanada
  3. 3.Intensive Care UnitOsaka University HospitalSuitaJapan
  4. 4.Department of Anesthesia, Hospital for Sick ChildrenUniversity of TorontoTorontoCanada
  5. 5.Department of Health ScienceUniversity of Milan-BicoccaMonzaItaly
  6. 6.Department of PhysiologyUniversity of TorontoTorontoCanada
  7. 7.Division of Respirology, Department of MedicineUniversity Health Network and Mount Sinai HospitalTorontoCanada
  8. 8. DHU A-TVB, Service de Réanimation Médicale, CHU Henri MondorAssistance Publique-Hôpitaux de Paris, CréteilFrance
  9. 9.Groupe de recherche clinique CARMAS, Faculté de Médecine de CréteilUniversité Paris Est CréteilCréteilFrance
  10. 10.Division of Respiratory Diseases and Tuberculosis, Department of Medicine, Faculty of MedicineSiriraj HospitalBangkokThailand
  11. 11.Keenan Research Centre, Li Ka Shing Knowledge InstituteSt. Michael’s HospitalTorontoCanada
  12. 12.Interdepartmental Division of Critical Care MedicineUniversity of TorontoTorontoCanada
  13. 13.Anesthesia and Intensive Care, Fondazione IRCCS Policlinico San MatteoUniversity of PaviaPaviaItaly
  14. 14.Dipartimento di Fisiopatologia Medico-Chirurgica e dei TrapiantiUniversità degli Studi di MilanoMilanItaly
  15. 15.Adult Intensive Care and Burn UnitUniversity Hospital of LausanneLausanneSwitzerland
  16. 16.Department of Medical Intensive CareUniversity Hospital of AngersAngersFrance
  17. 17.Dipartimento dell’Emergenza e Trapianti d’Organo (DETO), Sezione di Anestesiologia e RianimazioneUniversità degli Studi di Bari “Aldo Moro”BariItaly
  18. 18.Division of Pulmonary and Critical Care MedicineEdward Hines Jr., Veterans Affairs Hospital and Loyola University of Chicago Stritch School of MedicineHinesUSA
  19. 19.Department of Critical CareMcGill University Heath CentreMontrealCanada
  20. 20.Department of Anesthesia, Critical Care, and Pain MedicineBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonUSA
  21. 21.Institut de Investigació i Innovació Parc Taulí, CIBER Enfermedades Respiratorias, Critical Care Center, Parc Tauli Hospital UniversitariUniversitat Autònoma de BarcelonaSabadellSpain
  22. 22.Pulmonary Division, Heart Institute (InCor), Hospital das ClínicasUniversity of São PauloSão PauloBrazil
  23. 23.Servei de Medicina IntensivaHospital de Sant PauBarcelonaSpain

Personalised recommendations