Advertisement

Intensive Care Medicine

, Volume 42, Issue 10, pp 1528–1534 | Cite as

Heart rate reduction with esmolol is associated with improved arterial elastance in patients with septic shock: a prospective observational study

  • A. MorelliEmail author
  • M. Singer
  • V. M. Ranieri
  • A. D’Egidio
  • L. Mascia
  • A. Orecchioni
  • F. Piscioneri
  • F. Guarracino
  • E. Greco
  • M. Peruzzi
  • G. Biondi-Zoccai
  • G. Frati
  • S. M. Romano
Original

Abstract

Purpose

Ventricular–arterial (V–A) decoupling decreases myocardial efficiency and is exacerbated by tachycardia that increases static arterial elastance (Ea). We thus investigated the effects of heart rate (HR) reduction on Ea in septic shock patients using the beta-blocker esmolol. We hypothesized that esmolol improves Ea by positively affecting the tone of arterial vessels and their responsiveness to HR-related changes in stroke volume (SV).

Methods

After at least 24 h of hemodynamic optimization, 45 septic shock patients, with an HR ≥95 bpm and requiring norepinephrine to maintain mean arterial pressure (MAP) ≥65 mmHg, received a titrated esmolol infusion to maintain HR between 80 and 94 bpm. Ea was calculated as MAP/SV. All measurements, including data from right heart catheterization, echocardiography, arterial waveform analysis, and norepinephrine requirements, were obtained at baseline and at 4 h after commencing esmolol.

Results

Esmolol reduced HR in all patients and this was associated with a decrease in Ea (2.19 ± 0.77 vs. 1.72 ± 0.52 mmHg l−1), arterial dP/dt max (1.08 ± 0.32 vs. 0.89 ± 0.29 mmHg ms−1), and a parallel increase in SV (48 ± 14 vs. 59 ± 18 ml), all p < 0.05. Cardiac output and ejection fraction remained unchanged, whereas norepinephrine requirements were reduced (0.7 ± 0.7 to 0.58 ± 0.5 µg kg−1 min−1, p < 0.05).

Conclusions

HR reduction with esmolol effectively improved Ea while allowing adequate systemic perfusion in patients with severe septic shock who remained tachycardic despite standard volume resuscitation. As Ea is a major determinant of V–A coupling, its reduction may contribute to improving cardiovascular efficiency in septic shock.

Keywords

Tachycardia Septic shock Beta-adrenergic receptors Heart rate Arterial elastance Dicrotic notch Ventricular-arterial coupling 

Notes

Compliance with ethical standards

Conflicts of interest

Andrea Morelli received honoraria for speaking at Baxter symposia. Mervyn Singer served as a consultant and received honoraria for speaking and chairing symposia for Baxter. Salvatore Mario Romano has a patent “Method and apparatus for measuring cardiac flow output” (USA Patent Number 6758822). No other disclosures were reported.

References

  1. 1.
    Dellinger RP, Levy MM, Rhodes A et al (2013) Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2012. Intensive Care Med 39:165–228CrossRefPubMedGoogle Scholar
  2. 2.
    Cecconi M, De Backer D, Antonelli M et al (2014) Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med 40:1795–1815CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Angus DC, Barnato AE, Bell D et al (2015) A systematic review and meta-analysis of early goal-directed therapy for septic shock: the ARISE, ProCESS and ProMISe Investigators. Intensive Care Med 41:1549–1560CrossRefPubMedGoogle Scholar
  4. 4.
    Guarracino F, Ferro B, Morelli A, Bertini P, Baldassarri R, Pinsky MR (2014) Ventriculoarterial decoupling in human septic shock. Crit Care 18:R80CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Guarracino F, Baldassarri R, Pinsky MR (2013) Ventriculo-arterial decoupling in acutely altered hemodynamic states. Crit Care 17:213CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Vieillard-Baron A, Caille V, Charron C, Belliard G, Page B, Jardin F (2008) Actual incidence of global left ventricular hypokinesia in adult septic shock. Crit Care Med 36:1701–1706CrossRefPubMedGoogle Scholar
  7. 7.
    Ohte N, Cheng CP, Little WC (2003) Tachycardia exacerbates abnormal left ventricular–arterial coupling in heart failure. Heart Vessels 18:136–141CrossRefPubMedGoogle Scholar
  8. 8.
    Prabhu SD (2007) Altered left ventricular–arterial coupling precedes pump dysfunction in early heart failure. Heart Vessels 22:170–177CrossRefPubMedGoogle Scholar
  9. 9.
    Magder SA (2012) The ups and downs of heart rate. Crit Care Med 40:239–245CrossRefPubMedGoogle Scholar
  10. 10.
    Azimi G, Vincent JL (1986) Ultimate survival from septic shock. Resuscitation 14:245–253CrossRefPubMedGoogle Scholar
  11. 11.
    Parker MM, Shelhamer JH, Natanson C, Alling DW, Parrillo JE (1987) Serial cardiovascular variables in survivors and nonsurvivors of human septic shock: heart rate as an early predictor of prognosis. Crit Care Med 15:923–929CrossRefPubMedGoogle Scholar
  12. 12.
    Morelli A, Ertmer C, Westphal M et al (2013) Effect of heart rate control with esmolol on hemodynamic and clinical outcomes in patients with septic shock: a randomized clinical trial. JAMA 310:1683–1691CrossRefPubMedGoogle Scholar
  13. 13.
    Vellinga NA, Boerma EC, Koopmans M et al (2015) International study on microcirculatory shock occurrence in acutely ill patients. Crit Care Med 43:48–56CrossRefPubMedGoogle Scholar
  14. 14.
    Leibovici L, Gafter-Gvili A, Paul M et al (2007) Relative tachycardia in patients with sepsis: an independent risk factor for mortality. QJM 100:629–634CrossRefPubMedGoogle Scholar
  15. 15.
    Dekleva M, Lazic JS, Soldatovic I et al (2015) Improvement of ventricular–arterial coupling in elderly patients with heart failure after beta blocker therapy: results from the CIBIS-ELD trial. Cardiovasc Drugs Ther 29:287–294CrossRefPubMedGoogle Scholar
  16. 16.
    Razzolini R, Tarantini G, Boffa GM, Orlando S, Iliceto S (2004) Effects of carvedilol on ventriculo-arterial coupling in patients with heart failure. Ital Heart J 5:517–522PubMedGoogle Scholar
  17. 17.
    Romano SM, Pistolesi M (2002) Assessment of cardiac output from systemic arterial pressure in humans. Crit Care Med 30:1834–1841CrossRefPubMedGoogle Scholar
  18. 18.
    Scolletta S, Bodson L, Donadello K, Taccone FS, Devigili A, Vincent JL, De Backer D (2013) Assessment of left ventricular function by pulse wave analysis in critically ill patients. Intensive Care Med 39:1025–1033CrossRefPubMedGoogle Scholar
  19. 19.
    Lewis T (1906) The factors influencing the prominence of the dicrotic wave. J Physiol 34:414–429CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Smith D, Craige E (1986) Mechanism of the dicrotic pulse. Br Heart J 56:531–534CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Fincke R, Hochman JS, Lowe AM et al (2004) Cardiac power is the strongest hemodynamic correlate of mortality in cardiogenic shock: a report from the SHOCK trial registry. J Am Coll Cardiol 44:340–348CrossRefPubMedGoogle Scholar
  22. 22.
    Sunagawa K, Maughan WL, Burkhoff D, Sagawa K (1983) Left ventricular interaction with arterial load studied in the isolated canine ventricle. Am J Physiol 245:H733–H788Google Scholar
  23. 23.
    Levy MM, Rhodes A, Phillips GS, Townsend SR, Schorr CA, Beale R, Osborn T, Lemeshow S, Chiche JD, Artigas A, Dellinger RP (2014) Surviving Sepsis Campaign: association between performance metrics and outcomes in a 7.5-year study. Intensive Care Med 40:1623–1633CrossRefPubMedGoogle Scholar
  24. 24.
    Rhodes A, Phillips G, Beale R et al (2015) The Surviving Sepsis Campaign bundles and outcome: results from the International Multicentre Prevalence Study on Sepsis (the IMPreSS study). Intensive Care Med 41:1620–1628CrossRefPubMedGoogle Scholar
  25. 25.
    Freeman GL, Little WC, O’Rourke RA (1987) Influence of heart rate on the left ventricular performance in conscious dogs. Circ Res 61:455–464CrossRefPubMedGoogle Scholar
  26. 26.
    Rudiger A, Singer M (2007) Mechanisms of sepsis-induced cardiac dysfunction. Crit Care Med 35:1599–1608CrossRefPubMedGoogle Scholar
  27. 27.
    Sanfilippo F, Santonocito C, Morelli A, Foex P (2015) Beta-blocker use in severe sepsis and septic shock: a systematic review. Curr Med Res Opin 31:1817–1825CrossRefPubMedGoogle Scholar
  28. 28.
    Pemberton P, Veenith T, Snelson C, Whitehouse T (2015) Is it time to beta block the septic patient? Biomed Res Int. doi: 10.1155/2015/424308
  29. 29.
    Asfar P, Meziani F, Hamel JF et al (2014) High versus low blood-pressure target in patients with septic shock. N Engl J Med 370:1583–1593CrossRefPubMedGoogle Scholar
  30. 30.
    Sanfilippo F, Corredor C, Fletcher N, Landesberg G, Benedetto U, Foex P, Cecconi M (2015) Diastolic dysfunction and mortality in septic patients: a systematic review and meta-analysis. Intensive Care Med 41:1004–1013CrossRefPubMedGoogle Scholar
  31. 31.
    Repessé X, Charron C, Vieillard-Baron A (2013) Evaluation of left ventricular systolic function revisited in septic shock. Crit Care 17(4):164CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kimmoun A, Louis H, Kattani NA et al (2015) β1-adrenergic inhibition improves cardiac and vascular function in experimental septic shock. Crit Care Med 43:e332–e340CrossRefPubMedGoogle Scholar
  33. 33.
    Ogura Y, Jesmin S, Yamaguchi N et al (2014) Potential amelioration of upregulated renal HIF-1alpha-endothelin-1 system by landiolol hydrochloride in a rat model of endotoxemia. Life Sci 118:347–356CrossRefPubMedGoogle Scholar
  34. 34.
    Seki Y, Jesmin S, Shimojo N et al (2014) Significant reversal of cardiac upregulated endothelin-1 system in a rat model of sepsis by landiolol hydrochloride. Life Sci 118:357–363CrossRefPubMedGoogle Scholar
  35. 35.
    Bergel DH (1961) The dynamic elastic properties of the arterial wall. J Physiol 156:458–469CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Giannattasio C, Vincenti A, Failla M et al (2003) Effects of heart rate changes on arterial distensibility in humans. Hypertension 42:253–256CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and ESICM 2016

Authors and Affiliations

  • A. Morelli
    • 1
    Email author
  • M. Singer
    • 2
  • V. M. Ranieri
    • 1
  • A. D’Egidio
    • 1
  • L. Mascia
    • 4
  • A. Orecchioni
    • 1
  • F. Piscioneri
    • 1
  • F. Guarracino
    • 3
  • E. Greco
    • 1
  • M. Peruzzi
    • 4
  • G. Biondi-Zoccai
    • 4
    • 5
  • G. Frati
    • 4
    • 5
  • S. M. Romano
    • 6
  1. 1.Department of Cardiovascular, Respiratory, Nephrological, Anesthesiological and Geriatric SciencesUniversity of Rome, “La Sapienza”, Policlinico Umberto PrimoRomeItaly
  2. 2.Bloomsbury Institute of Intensive Care MedicineUniversity College London, Cruciform BuildingLondonUK
  3. 3.Department of Anesthesia and Intensive Care, Cardiothoracic Anesthesia and Intensive Care MedicineUniversity Hospital of PisaPisaItaly
  4. 4.Department of Medico-Surgical Sciences and BiotechnologiesUniversity of Rome “La Sapienza”LatinaItaly
  5. 5.Department of AngioCardioNeurologyIRCCS NeuromedPozzilliItaly
  6. 6.Unit of Internal Medicine and Cardiology, Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly

Personalised recommendations