Intensive Care Medicine

, Volume 42, Issue 5, pp 739–749 | Cite as

Experts’ opinion on management of hemodynamics in ARDS patients: focus on the effects of mechanical ventilation

  • A. Vieillard-Baron
  • M. Matthay
  • J. L. Teboul
  • T. Bein
  • M. Schultz
  • S. Magder
  • J. J. Marini



Acute respiratory distress syndrome (ARDS) is frequently associated with hemodynamic instability which appears as the main factor associated with mortality. Shock is driven by pulmonary hypertension, deleterious effects of mechanical ventilation (MV) on right ventricular (RV) function, and associated-sepsis. Hemodynamic effects of ventilation are due to changes in pleural pressure (Ppl) and changes in transpulmonary pressure (TP). TP affects RV afterload, whereas changes in Ppl affect venous return. Tidal forces and positive end-expiratory pressure (PEEP) increase pulmonary vascular resistance (PVR) in direct proportion to their effects on mean airway pressure (mPaw). The acutely injured lung has a reduced capacity to accommodate flowing blood and increases of blood flow accentuate fluid filtration. The dynamics of vascular pressure may contribute to ventilator-induced injury (VILI). In order to optimize perfusion, improve gas exchange, and minimize VILI risk, monitoring hemodynamics is important.


During passive ventilation pulse pressure variations are a predictor of fluid responsiveness when conditions to ensure its validity are observed, but may also reflect afterload effects of MV. Central venous pressure can be helpful to monitor the response of RV function to treatment. Echocardiography is suitable to visualize the RV and to detect acute cor pulmonale (ACP), which occurs in 20–25 % of cases. Inserting a pulmonary artery catheter may be useful to measure/calculate pulmonary artery pressure, pulmonary and systemic vascular resistance, and cardiac output. These last two indexes may be misleading, however, in cases of West zones 2 or 1 and tricuspid regurgitation associated with RV dilatation. Transpulmonary thermodilution may be useful to evaluate extravascular lung water and the pulmonary vascular permeability index. To ensure adequate intravascular volume is the first goal of hemodynamic support in patients with shock. The benefit and risk balance of fluid expansion has to be carefully evaluated since it may improve systemic perfusion but also may decrease ventilator-free days, increase pulmonary edema, and promote RV failure. ACP can be prevented or treated by applying RV protective MV (low driving pressure, limited hypercapnia, PEEP adapted to lung recruitability) and by prone positioning. In cases of shock that do not respond to intravascular fluid administration, norepinephrine infusion and vasodilators inhalation may improve RV function. Extracorporeal membrane oxygenation (ECMO) has the potential to be the cause of, as well as a remedy for, hemodynamic problems. Continuous thermodilution-based and pulse contour analysis-based cardiac output monitoring are not recommended in patients treated with ECMO, since the results are frequently inaccurate. Extracorporeal CO2 removal, which could have the capability to reduce hypercapnia/acidosis-induced ACP, cannot currently be recommended because of the lack of sufficient data.


ARDS Guidelines Shock Heart–lung interactions Echocardiography Hemodynamic monitoring 


Compliance with ethical standards

Conflicts of interest

AVieillard-Baron declares no conflict of interest. M. Matthay declares no conflict of interest. J. L. Teboul is a member of the medical advisory board of Pulsion Medical systems (Germany) and gave lectures for Edwards Lifesciences (USA) and Masimo (USA). T. Bein is member of the medical advisory board of Novalung, Heilbron, Germany and he received honoraria. S. Magder declares no conflict of interest. J. J. Marini declares no conflict of interest.


  1. 1.
    Mekontso-Dessap A, Boissier F, Charron C, Bégot E, Repessé X, Legras A, Brun-Buisson C, Vignon P, Vieillard-Baron A (2015) Acute cor pulmonale during protective ventilation for acute respiratory distress syndrome: prevalence, predictors, and clinical impact. Intensive Care Med. doi: 10.1007/s00134-015-4141-2
  2. 2.
    McAuley DF, Laffey JG, O’Kane CM, Perkins GD, Mullan B, Trinder TJ, Johnston P, Hopkins PA, Johnston AJ, McDowell C, McNally C, HARP-2 Investigators, Irish Critical Care Trials Group (2014) Simvastatin in the acute respiratory distress syndrome. N Engl J Med 371:1695–1703CrossRefPubMedGoogle Scholar
  3. 3.
    Vieillard-Baron A, Girou E, Valente E, Brun-Buisson C, Jardin F, Lemaire F, Brochard L (2000) Predictors of mortality in acute respiratory distress syndrome. Focus on the role of right heart catheterization. Am J Respir Crit Care Med 161:1597–1601PubMedGoogle Scholar
  4. 4.
    Magder S, Guerard B (2012) Heart-lung interactions and pulmonary buffering: lessons from a computational modeling study. Respir Physiol Neurobiol 182:60–70CrossRefPubMedGoogle Scholar
  5. 5.
    Marini JJ, Culver BH, Butler J (1981) Mechanical effect of lung distention with positive pressure on cardiac function. Am Rev Respir Dis 124:382–386PubMedGoogle Scholar
  6. 6.
    Magder SA, Lichtenstein S, Adelman AG (1983) Effects of negative pleural pressure on left ventricular hemodynamics. Am J Cardiol 52:588–593CrossRefPubMedGoogle Scholar
  7. 7.
    Nanas S, Magder S (1992) Adaptations of the peripheral circulation to PEEP. Am Rev Respir Dis 146:688–693CrossRefPubMedGoogle Scholar
  8. 8.
    Permutt S, Bromberger-Barnea B, Bane HN (1962) Alveolar pressure, pulmonary venous pressure, and the vascular waterfall. Med Thorac 19:239–260PubMedGoogle Scholar
  9. 9.
    Jardin F, Vieillard-Baron A (2003) Right ventricular function and positive pressure ventilation in clinical practice: from hemodynamic subsets to respirator settings. Intensive Care Med 29:1426–1434CrossRefPubMedGoogle Scholar
  10. 10.
    Tomashefski JF Jr, Davies P, Boggis C, Greene R, Zapol WM, Reid LM (1983) The pulmonary vascular lesions of the adult respiratory distress syndrome. Am J Pathol 112:112–126PubMedPubMedCentralGoogle Scholar
  11. 11.
    Brigham KL, Woolverton WC, Blake LH, Staub NC (1974) Increased sheep lung vascular permeability caused by pseudomonas bacteremia. J Clin Invest 54:792–804CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Marini JJ, Ravenscraft SA (1992) Mean airway pressure: physiologic determinants and clinical importance—Part 1: physiologic determinants and measurements. Crit Care Med 20:1461–1472CrossRefPubMedGoogle Scholar
  13. 13.
    Petersson J, Ax M, Frey J, Sánchez-Crespo A, Lindahl SG, Mure M (2010) Positive end-expiratory pressure redistributes regional blood flow and ventilation differently in supine and prone humans. Anesthesiology 113:1361–1369CrossRefPubMedGoogle Scholar
  14. 14.
    Frennaux M, Williams L (2007) Ventricular-arterial and ventricular-ventricular interaction and their relevance to diastolic filling. Prog Cardiovasc Dis 49:252–262CrossRefGoogle Scholar
  15. 15.
    Loring SH, O’Donnell CR, Behazin N, Malhotra A, Sarge T, Ritz R, Novack V, Talmor D (2010) Esophageal pressures in acute lung injury: do they represent artifact or useful information about transpulmonary pressure, chest wall mechanics, and lung stress? J Appl Physiol 108:515–522CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Fessler HE, Brower RG, Shapiro EP, Permutt S (1993) Effects of positive end-expiratory pressure and body position on pressure in the thoracic great veins. Am Rev Respir Dis 148:1657–1664CrossRefPubMedGoogle Scholar
  17. 17.
    Quintel M, Pelosi P, Caironi P, Meinhardt JP, Luecke T, Herrmann P, Taccone P, Rylander C, Valenza F, Carlesso E, Gattinoni L (2004) An increase of abdominal pressure increases pulmonary edema in oleic acid-induced lung injury. Am J Respir Crit Care Med 169:534–541CrossRefPubMedGoogle Scholar
  18. 18.
    Protti A, Andreis DT, Monti M, Santini A, Sparacino CC, Langer T, Votta E, Gatti S, Lombardi L, Leopardi O, Masson S, Cressoni M, Gattinoni L (2013) Lung stress and strain during mechanical ventilation: any difference between statics and dynamics? Crit Care Med 41:1046–1055CrossRefPubMedGoogle Scholar
  19. 19.
    Marini JJ, Hotchkiss JR, Broccard AF (2003) Bench to bedside review: microvascular and airspace linkage in ventilator-induced lung injury. Crit Care 7:435–444CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Albert RK (2012) The role of ventilation-induced surfactant dysfunction and atelectasis in causing acute respiratory distress syndrome. Am J Respir Crit Care Med 185:702–708CrossRefPubMedGoogle Scholar
  21. 21.
    Broccard A, Vannay C, Feihl F, Schaller MD (2002) Impact of low pulmonary vascular pressure on ventilator-induced lung injury. Crit Care Med 30:2183–2190CrossRefPubMedGoogle Scholar
  22. 22.
    López-Aguilar J, Piacentini E, Villagrá A, Murias G, Pascotto S, Saenz-Valiente A, Fernández-Segoviano P, Hotchkiss JR, Blanch L (2006) Contributions of vascular flow and pulmonary capillary pressure to ventilator-induced lung injury. Crit Care Med 34:1106–1112CrossRefPubMedGoogle Scholar
  23. 23.
    Hotchkiss JR, Blanch LL, Murias G, Adams AB, Olson D, Wangensteen OD, Leo PH, Marini JJ (2000) Effects of decreased respiratory frequency on ventilator induced lung injury. Am J Respir Crit Care Med 161:463–468CrossRefPubMedGoogle Scholar
  24. 24.
    Hotchkiss JR, Simonson DA, Marek DJ, Marini JJ, Dries DJ (2002) Pulmonary microvascular fracture in a patient with acute respiratory distress syndrome. Crit Care Med 30:2368–2370CrossRefPubMedGoogle Scholar
  25. 25.
    Michard F, Boussat S, Chemla D, Anguel N, Mercat A, Lecarpentier Y, Richard C, Pinsky MR, Teboul JL (2000) Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med 162:134–138CrossRefPubMedGoogle Scholar
  26. 26.
    Yang X, Du B (2014) Does pulse pressure variation predict fluid responsiveness in critically ill patients? A systematic review and meta-analysis. Crit Care 18:650CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Michard F, Chemla D, Richard C, Wysocki M, Pinsky MR, Lecarpentier Y, Teboul JL (1999) Clinical use of respiratory changes in arterial pulse pressure to monitor the hemodynamic effects of PEEP. Am J Respir Crit Care Med 159:935–939CrossRefPubMedGoogle Scholar
  28. 28.
    Lhéritier G, Legras A, Caille A, Lherm T, Mathonnet A, Frat JP, Courte A, Martin-Lefèvre L, Gouëllo JP, Amiel JB, Garot D, Vignon P (2013) Prevalence and prognostic value of acute cor pulmonale and patent foramen ovale in ventilated patients with early acute respiratory distress syndrome: a multicenter study. Intensive Care Med 39:1734–1742CrossRefPubMedGoogle Scholar
  29. 29.
    Vieillard-Baron A, Prin S, Chergui K, Dubourg O, Jardin F (2002) Echo-Doppler demonstration of acute cor pulmonale at the bedside in the medical intensive care unit. Am J Respir Crit Care Med 166:1310–1319CrossRefPubMedGoogle Scholar
  30. 30.
    Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, Jaeschke R, Mebazaa A, Pinsky MR, Teboul JL, Vincent JL, Rhodes A (2014) Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med 40:1795–1815CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Teboul JL, Pinsky MR, Mercat A, Anguel N, Bernardin G, Achard JM, Boulain T, Richard C (2000) Estimating cardiac filling pressure in mechanically ventilated patients with hyperinflation. Crit Care Med 28:3631–3636CrossRefPubMedGoogle Scholar
  32. 32.
    Bull TM, Clark B, McFann K, Moss M, National Institutes of Health/National Heart, Lung, and Blood Institute ARDS Network (2010) Pulmonary vascular dysfunction is associated with poor outcomes in patients with acute lung injury. Am J Respir Crit Care Med 182:1123–1128CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Jozwiak M, Silva S, Persichini R, Anguel N, Osman D, Richard C, Teboul JL, Monnet X (2013) Extravascular lung water is an independent prognostic factor in patients with acute respiratory distress syndrome. Crit Care Med 41:472–480CrossRefPubMedGoogle Scholar
  34. 34.
    Pinsky MR (2014) My paper 20 years later: effect of positive end-expiratory pressure on right ventricular function in humans. Intensive Care Med 40:935–941CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Ghignone M, Girling L, Prewitt RM (1984) Volume expansion versus norepinephrine in treatment of a low cardiac output complicating an acute increase in right ventricular afterload in dogs. Anesthesiology 60:132–135CrossRefPubMedGoogle Scholar
  36. 36.
    Schneider AJ, Teule GJ, Groeneveld AB, Nauta J, Heidendal GA, Thijs LJ (1988) Biventricular performance during volume loading in patients with early septic shock, with emphasis on the right ventricle: a combined hemodynamic and radionuclide study. Am Heart J 116:103–112CrossRefPubMedGoogle Scholar
  37. 37.
    Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT, Hayden D, deBoisblanc B, Connors AF Jr, Hite RD, Harabin AL (2006) Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 354:2564–2575CrossRefPubMedGoogle Scholar
  38. 38.
    Grissom CK, Hirshberg EL, Dickerson JB, Brown SM, Lanspa MJ, Liu KD, Schoenfeld D, Tidswell M, Hite RD, Rock P, Miller RR 3rd, Morris AH (2015) Fluid management with a simplified conservative protocol for the acute respiratory distress syndrome. Crit Care Med 43:288–295CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Guyton AC, Lindsey AW, Gilluly JJ (1954) The limits of right ventricular compensation following acute increase in pulmonary circulation resistance. Circ Res 2:326–332CrossRefPubMedGoogle Scholar
  40. 40.
    Vlahakes GJ, Turley K, Hoffman JI (1981) The pathophysiology of failure in acute right ventricular hypertension: hemodynamic and biochemical correlations. Circulation 63:87–95CrossRefPubMedGoogle Scholar
  41. 41.
    Morelli A, Teboul JL, Maggiore SM, Vieillard-Baron A, Rocco M, Conti G, De Gaetano A, Picchini U, Orecchioni A, Carbone I, Tritapepe L, Pietropaoli P, Westphal M (2006) Effects of levosimendan on right ventricular afterload in patients with acute respiratory distress syndrome: a pilot study. Crit Care Med 34:2287–2293CrossRefPubMedGoogle Scholar
  42. 42.
    Dzierba AL, Abel EE, Buckley MS, Lat I (2014) A review of inhaled nitric oxide and aerosolized epoprostenol in acute lung injury or the acute respiratory distress syndrome. Pharmacotherapy 34:279–290CrossRefPubMedGoogle Scholar
  43. 43.
    Liu KD, Levitt J, Zhuo H, Kallet RH, Brady S, Steingrub J, Tidswell M, Siegel MD, Soto G, Peterson MW, Chesnutt MS, Phillips C, Weinacker A, Thompson BT, Eisner MD, Matthay MA (2008) Randomized clinical trial of activated protein C for the treatment of acute lung injury. Am J Respir Crit Care Med 178:618–623CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Duggan M, McCaul CL, McNamara PJ, Engelberts D, Ackerley C, Kavanagh BP (2003) Atelectasis causes vascular leaks and lethal right ventricular failure in uninjured rat lungs. Am J Respir Crit Care Med 167:1633–1640CrossRefPubMedGoogle Scholar
  45. 45.
    Mekontso Dessap A, Voiriot G, Zhou T, Marcos E, Dudek SM, Jacobson JR, Machado R, Adnot S, Brochard L, Maitre B, Garcia JG (2012) Conflicting physiological and genomic cardiopulmonary effects of recruitment maneuvers in murine acute lung injury. Am J Respir Cell Mol Biol 46:541–550CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Naeje R, Brimioulle S (2001) Physiology in medicine: importance of hypoxic vasoconstriction in maintaining arterial oxygenation during acute respiratory failure. Crit Care 5:67–71CrossRefGoogle Scholar
  47. 47.
    Rabinovitch M, Gamble W, Nadas AS, Miettinen OS, Reid L (1979) Rat pulmonary circulation after chronic hypoxia: hemodynamic and structural features. Am J Physiol 236:H818–H827PubMedGoogle Scholar
  48. 48.
    Mekontso Dessap A, Charron C, Devaquet J, Aboab J, Jardin F, Brochard L, Vieillard-Baron A (2009) Impact of acute hypercapnia and augmented positive end-expiratory pressure on right ventricle function in severe acute respiratory distress syndrome. Intensive Care Med 35:1850–1858CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Vieillard-Baron A, Price L, Matthay MA (2013) Acute cor pulmonale in ARDS. Intensive Care Med 39:1836–1838CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    West JB, Dollery CT, Naimark A (1964) Distribution of blood flow in isolated lung; relation to vascular and alveolar pressures. J Appl Physiol 19:713–724PubMedGoogle Scholar
  51. 51.
    Jardin F, Brun-Ney D, Cazaux P, Dubourg O, Hardy A, Bourdarias JP (1989) Relation between transpulmonary pressure and right ventricular isovolumetric pressure change during respiratory support. Catheter Cardiovasc Diagn 16:215–220CrossRefGoogle Scholar
  52. 52.
    Vieillard-Baron A, Prin S, Augarde R, Desfonds P, Page B, Beauchet A, Jardin F (2002) Increasing respiratory rate to improve CO2 clearance during mechanical ventilation is not a panacea in acute respiratory failure. Crit Care Med 30:1407–1412CrossRefPubMedGoogle Scholar
  53. 53.
    Orde SR, Behafar A, Stalboerger PG, Barros-Gomes S, Kane GC, Oh JK (2015) Effect of positive end-expiratory pressure on porcine right ventricle function assessed by speckle tracking echocardiography. BMC Anesthesiol 15:49CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Ferguson ND, Cook DJ, Guyatt GH, Mehta S, Hand L, Austin P, OSCILLATE Trial Investigators, Canadian Critical Care Trials Group et al (2013) High-frequency oscillation in early acute respiratory distress syndrome. N Engl J Med 368:795–805CrossRefPubMedGoogle Scholar
  55. 55.
    Guervilly C, Forel JM, Hraiech S, Demory D, Allardet-Servent J, Adda M, Barreau-Baumstark K, Castanier M, Papazian L, Roch A (2012) Right ventricular function during high-frequency oscillatory ventilation in adults with acute respiratory distress syndrome. Crit Care Med 40:1539–1545CrossRefPubMedGoogle Scholar
  56. 56.
    Dreyfuss D, Soler P, Basset G, Saumon G (1988) High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 137:1159–1164CrossRefPubMedGoogle Scholar
  57. 57.
    Raj JU, Bland RD, Lai-Fook SJ (1986) Microvascular pressures measured by micropipettes in isolated edematous rabbit lungs. J Appl Physiol 60:539–545PubMedGoogle Scholar
  58. 58.
    Yoshida T, Uchiyama A, Matsuura N, Mashimo T, Fujino Y (2012) Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model: high transpulmonary pressure associated with strong spontaneous breathing effort may worsen lung injury. Crit Care Med 40:1578–1585CrossRefPubMedGoogle Scholar
  59. 59.
    Vieillard-Baron A, Prin S, Schmitt JM, Augarde R, Page B, Beauchet A, Jardin F (2002) Pressure-volume curves in acute respiratory distress syndrome: clinical demonstration of the influence of expiratory flow limitation on the initial slope. Am J Respir Crit Care Med 165:1107–1112CrossRefPubMedGoogle Scholar
  60. 60.
    Tabuchi A, Nickless HT, Kim M, Semple JW, Koch E, Brochard L, Slutsky AS, Pries AR, Kuebler WM (2015) Acute lung injury causes asynchronous alveolar ventilation which can be corrected by individual sighs. Am J Respir Crit Care Med 193:396–406Google Scholar
  61. 61.
    Vieillard-Baron A, Rabiller A, Chergui K, Peyrouset O, Page B, Beauchet A, Jardin F (2005) Prone position improves mechanics and alveolar ventilation in acute respiratory distress syndrome. Intensive Care Med 31:220–226CrossRefPubMedGoogle Scholar
  62. 62.
    Broccard A, Shapiro RS, Schmitz LL, Adams AB, Nahum A, Marini JJ (2000) Prone positioning attenuates and redistributes ventilator-induced lung injury in dogs. Crit Care Med 28:295–303CrossRefPubMedGoogle Scholar
  63. 63.
    Vieillard-Baron A, Charron C, Caille V, Belliard G, Page B, Jardin F (2007) Prone position unloads the right ventricle in severe ARDS. Chest 132:1440–1446CrossRefPubMedGoogle Scholar
  64. 64.
    Joszwiak M, Teboul JL, Anguel N, Persichini R, Silva S, Chemla D, Richard C, Monnet X (2013) Beneficial hemodynamic effects of prone positioning in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 188:1428–1433CrossRefGoogle Scholar
  65. 65.
    Guérin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, PROSEVA Study Group et al (2013) Prone positioning in severe acute respiratory distress syndrome. N Engl J Med 368:2159–2168CrossRefPubMedGoogle Scholar
  66. 66.
    Albert RK, Keniston A, Baboi L, Ayzac L, Guérin C, Proseva Investigators (2014) Prone position-induced improvement in gas exchange does not predict improved survival in the acute respiratory distress syndrome. Am J Respir Crit Care Med 189:494–496CrossRefPubMedGoogle Scholar
  67. 67.
    Del Sorbo L, Cypel M, Fan E (2014) Extracorporeal life support for adults with severe acute respiratory failure. Lancet Respir Med 2:154–164CrossRefPubMedGoogle Scholar
  68. 68.
    Reis Miranda D, van Thiel R, Brodie D, Bakker J (2015) Right ventricular unloading after initiation of venovenous extracorporeal membrane oxygenation. Am J Respir Crit Care Med 191:346–348CrossRefPubMedGoogle Scholar
  69. 69.
    Pellegrino V, Hockings LE, Davies A (2014) Veno-arterial extracorporeal membrane oxygenation for adult cardiovascular failure. Curr Opin Crit Care 20:484–492CrossRefPubMedGoogle Scholar
  70. 70.
    Combes A, Brodie D, Bartlett R, Brochard L, Brower R, Conrad S, De Backer D, Fan E, Ferguson N, Fortenberry J, Fraser J, Gattinoni L, Lynch W, MacLaren G, Mercat A, Mueller T, Ogino M, Peek G, Pellegrino V, Pesenti A, Ranieri M, Slutsky A, Vuylsteke A, International ECMO Network (ECMONet) (2014) Position paper for the organization of extracorporeal membrane oxygenation programs for acute respiratory failure in adult patients. Am J Respir Crit Care Med 190:488–496CrossRefPubMedGoogle Scholar
  71. 71.
    Richard C, Argaud L, Blet A, Boulain T, Contentin L, Dechartres A, Dejode JM, Donetti L, Fartoukh M, Fletcher D, Kuteifan K, Lasocki S, Liet JM, Lukaszewicz AC, Mal H, Maury E, Osman D, Outin H, Richard JC, Schneider F, Tamion F (2014) Extracorporeal life support for patients with acute respiratory distress syndrome: report of a consensus conference. Ann Intensive Care 24(4):15CrossRefGoogle Scholar
  72. 72.
    Lazzeri C, Cianchi G, Bonizzoli M, Batacchi S, Peris A, Gensini GF (2015) The potential role and limitations of echocardiography in acute respiratory distress syndrome. Ther Adv Respir Dis 10:136–148Google Scholar
  73. 73.
    Haller M, Zöllner C, Manert W, Briegel J, Kilger E, Polasek J, Hummel T, Forst H, Peter K (1995) Thermodilution cardiac output may be incorrect in patients on venovenous extracorporeal lung assist. Am J Respir Crit Care Med 152:1812–1817CrossRefPubMedGoogle Scholar
  74. 74.
    Rauch H, Müller M, Fleischer F, Bauer H, Martin E, Böttiger BW (2002) Pulse contour analysis versus thermodilution in cardiac surgery patients. Acta Anaesthesiol Scand 46:424–429CrossRefPubMedGoogle Scholar
  75. 75.
    Schmidt M, Bailey M, Kelly J, Hodgson C, Cooper DJ, Scheinkestel C, Pellegrino V, Bellomo R, Pilcher D (2014) Impact of fluid balance on outcome of adult patients treated with extracorporeal membrane oxygenation. Intensive Care Med 40:1256–1266CrossRefPubMedGoogle Scholar
  76. 76.
    Choi SW, Nam KW (2008) Venous pressure regulation during pulsatile extracorporeal life support. Artif Organs 32:822–827CrossRefPubMedGoogle Scholar
  77. 77.
    Repessé X, Charron C, Vieillard-Baron A (2015) Acute cor pulmonale in ARDS: rationale for protecting the right ventricle. Chest 147:259–265CrossRefPubMedGoogle Scholar
  78. 78.
    Morimont P, Guiot J, Desaive T, Tchana-Sato V, Janssen N, Cagnina A, Hella D, Blaffart F, Defraigne JO, Lambermont B (2015) Veno-venous extracorporeal CO2 removal improves pulmonary hemodynamics in a porcine ARDS model. Acta Anaesthesiol Scand 59:448–456CrossRefPubMedGoogle Scholar
  79. 79.
    Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, Gattinoni L, van Haren F, Larsson A, McAuley DF, Ranieri M, Rubenfeld G, Thompson BT, Wrigge H, Slutsky AS, Pesenti A, Lung Safe Investigators, ESICM Trials Group (2016) Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care unit in 50 countries. JAMA 315:788–800CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and ESICM 2016

Authors and Affiliations

  • A. Vieillard-Baron
    • 1
    • 2
    • 3
  • M. Matthay
    • 4
  • J. L. Teboul
    • 5
    • 6
  • T. Bein
    • 7
  • M. Schultz
    • 8
  • S. Magder
    • 9
  • J. J. Marini
    • 10
  1. 1.Intensive Care Unit, Section Thorax-Vascular Disease-Abdomen-Metabolism, Service de RéanimationAssistance Publique-Hôpitaux de Paris, University Hospital Ambroise ParéBoulogne-BillancourtFrance
  2. 2.University of Versailles Saint-Quentin en Yvelines, Faculty of Medicine Paris Ile-de-France OuestSaint-Quentin en YvelinesFrance
  3. 3.INSERM U-1018, CESP, Team 5 (EpReC, Renal and Cardiovascular Epidemiology), UVSQVillejuifFrance
  4. 4.Departments of Medicine and Anesthesia and the Cardiovascular Research InstituteUniversity of California, San FranciscoSan FranciscoUSA
  5. 5.Assistance Publique-Hôpitaux de Paris, Hôpitaux universitaires Paris-Sud, Hôpital de Bicêtre, service de réanimation médicaleLe Kremlin-BicêtreFrance
  6. 6.Université Paris-Sud, Faculté de médecine Paris-Sud, Inserm UMR S_999Le Kremlin-BicêtreFrance
  7. 7.Department of Anesthesia, Operative Intensive CareUniversity Hospital RegensburgRegensburgGermany
  8. 8.Laboratory of Experimental Intensive Care and Anesthesiology, Department of Intensive CareAcademic Medical CenterAmsterdamThe Netherlands
  9. 9.Department of Critical CareMcGill University Health Centre (Glen Site Campus)MontrealCanada
  10. 10.Departments of Pulmonary and Critical Care MedicineUniversity of Minnesota and Regions HospitalMinneapolis/St. PaulUSA

Personalised recommendations