Intensive Care Medicine

, Volume 42, Issue 4, pp 542–550 | Cite as

Higher versus lower blood pressure targets for vasopressor therapy in shock: a multicentre pilot randomized controlled trial

  • François Lamontagne
  • Maureen O. Meade
  • Paul C. Hébert
  • Pierre Asfar
  • François Lauzier
  • Andrew J.E. Seely
  • Andrew G. Day
  • Sangeeta Mehta
  • John Muscedere
  • Sean M. Bagshaw
  • Niall D. Ferguson
  • Deborah J. Cook
  • Salmaan Kanji
  • Alexis F. Turgeon
  • Margaret S. Herridge
  • Sanjay Subramanian
  • Jacques Lacroix
  • Neill K.J. Adhikari
  • Damon C. Scales
  • Alison Fox-Robichaud
  • Yoanna Skrobik
  • Richard P. Whitlock
  • Robert S. Green
  • Karen K.Y. Koo
  • Teddie Tanguay
  • Sheldon Magder
  • Daren K. Heyland
  • for the Canadian Critical Care Trials Group.
Original

Abstract

Purpose

In shock, hypotension may contribute to inadequate oxygen delivery, organ failure and death. We conducted the Optimal Vasopressor Titration (OVATION) pilot trial to inform the design of a larger trial examining the effect of lower versus higher mean arterial pressure (MAP) targets for vasopressor therapy in shock.

Methods

We randomly assigned critically ill patients who were presumed to suffer from vasodilatory shock regardless of admission diagnosis to a lower (60–65 mmHg) versus a higher (75–80 mmHg) MAP target. The primary objective was to measure the separation in MAP between groups. We also recorded days with protocol deviations, enrolment rate, cardiac arrhythmias and mortality for prespecified subgroups.

Results

A total of 118 patients were enrolled from 11 centres (2.3 patients/site/month of screening). The between-group separation in MAP was 9 mmHg (95 % CI 7–11). In the lower and higher MAP groups, we observed deviations on 12 versus 8 % of all days on vasopressors (p = 0.059). Risks of cardiac arrhythmias (20 versus 36 %, p = 0.07) and hospital mortality (30 versus 33 %, p = 0.84) were not different between lower and higher MAP arms. Among patients aged 75 years or older, a lower MAP target was associated with reduced hospital mortality (13 versus 60 %, p = 0.03) but not in younger patients.

Conclusions

This pilot study supports the feasibility of a large trial comparing lower versus higher MAP targets for shock. Further research may help delineate the reasons for vasopressor dosing in excess of prescribed targets and how individual patient characteristics modify the response to vasopressor therapy.

Keywords

Vasopressors Shock Blood pressure targets Resuscitation 

Supplementary material

134_2016_4237_MOESM1_ESM.docx (20 kb)
Supplementary material 1 (DOCX 19 kb)

References

  1. 1.
    Angus DC, van der Poll T (2013) Severe sepsis and septic shock. N Engl J Med 369:2063. doi:10.1056/NEJMc1312359 CrossRefPubMedGoogle Scholar
  2. 2.
    Vincent JL, De Backer D (2013) Circulatory shock. N Engl J Med 369:1726–1734. doi:10.1056/NEJMra1208943 CrossRefPubMedGoogle Scholar
  3. 3.
    Bellomo R, Kellum JA, Wisniewski SR et al (1999) Effects of norepinephrine on the renal vasculature in normal and endotoxemic dogs. Am J Respir Crit Care Med 159:1186–1192. doi:10.1164/ajrccm.159.4.9802055 CrossRefPubMedGoogle Scholar
  4. 4.
    Dunser MW, Mayr AJ, Tur A et al (2003) Ischemic skin lesions as a complication of continuous vasopressin infusion in catecholamine-resistant vasodilatory shock: incidence and risk factors. Crit Care Med 31:1394–1398. doi:10.1097/01.CCM.0000059722.94182.79 CrossRefPubMedGoogle Scholar
  5. 5.
    Schmittinger CA, Torgersen C, Luckner G et al (2012) Adverse cardiac events during catecholamine vasopressor therapy: a prospective observational study. Intensive Care Med 38:950–958. doi:10.1007/s00134-012-2531-2 CrossRefPubMedGoogle Scholar
  6. 6.
    Weil MH, Tang W (2009) Challenging the rationale of routine vasopressor therapy for management of hypotension. Crit Care 13:179. doi:10.1186/cc7976 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Dellinger RP, Levy MM, Rhodes A et al (2013) Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med 41:580–637. doi:10.1097/CCM.0b013e31827e83af CrossRefPubMedGoogle Scholar
  8. 8.
    Mouncey PR, Osborn TM, Power GS et al (2015) Trial of early, goal-directed resuscitation for septic shock. N Engl J Med 372:1301–1311. doi:10.1056/NEJMoa1500896 CrossRefPubMedGoogle Scholar
  9. 9.
    Peake SL, Delaney A, Bailey M et al (2014) Goal-directed resuscitation for patients with early septic shock. N Engl J Med 371:1496–1506. doi:10.1056/NEJMoa1404380 CrossRefPubMedGoogle Scholar
  10. 10.
    Yealy DM, Kellum JA, Huang DT et al (2014) A randomized trial of protocol-based care for early septic shock. N Engl J Med 370:1683–1693. doi:10.1056/NEJMoa1401602 CrossRefPubMedGoogle Scholar
  11. 11.
    Asfar P, Meziani F, Hamel JF et al (2014) High versus low blood-pressure target in patients with septic shock. N Engl J Med. doi:10.1056/NEJMoa1312173 Google Scholar
  12. 12.
    De Backer D, Aldecoa C, Njimi H et al (2012) Dopamine versus norepinephrine in the treatment of septic shock: a meta-analysis. Crit Care Med 40:725–730. doi:10.1097/CCM.0b013e31823778ee CrossRefPubMedGoogle Scholar
  13. 13.
    De Backer D, Biston P, Devriendt J et al (2010) Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med 362:779–789. doi:10.1056/NEJMoa0907118 CrossRefPubMedGoogle Scholar
  14. 14.
    Panwar R, Lanyon N, Davies AR et al (2013) Mean perfusion pressure deficit during the initial management of shock–an observational cohort study. J Crit Care 28:816–824. doi:10.1016/j.jcrc.2013.05.009 CrossRefPubMedGoogle Scholar
  15. 15.
    D’Aragon F, Belley-Cote EP, Meade MO et al (2015) Blood pressure targets for vasopressor therapy: a systematic review. Shock 43:530–539. doi:10.1097/SHK.0000000000000348 CrossRefPubMedGoogle Scholar
  16. 16.
    Heyland DK, Muscedere J, Drover J et al (2011) Persistent organ dysfunction plus death: a novel, composite outcome measure for critical care trials. Crit Care 15:R98. doi:10.1186/cc10110 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Vincent JL, Moreno R, Takala J et al (1996) The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med 22:707–710CrossRefPubMedGoogle Scholar
  18. 18.
    Hinkle JL, McClaran J, Davies J et al (2010) Reliability and validity of the adult alpha functional independence measure instrument in England. J Neurosci Nurs 42:12–18CrossRefPubMedGoogle Scholar
  19. 19.
    Brown SM, Lanspa MJ, Jones JP et al (2013) Survival after shock requiring high-dose vasopressor therapy. Chest 143:664–671. doi:10.1378/chest.12-1106 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and ESICM 2016

Authors and Affiliations

  • François Lamontagne
    • 1
    • 2
    • 3
  • Maureen O. Meade
    • 4
    • 5
  • Paul C. Hébert
    • 6
  • Pierre Asfar
    • 7
  • François Lauzier
    • 8
    • 9
    • 25
  • Andrew J.E. Seely
    • 10
    • 11
  • Andrew G. Day
    • 12
  • Sangeeta Mehta
    • 13
  • John Muscedere
    • 14
  • Sean M. Bagshaw
    • 15
  • Niall D. Ferguson
    • 13
  • Deborah J. Cook
    • 4
    • 5
  • Salmaan Kanji
    • 11
  • Alexis F. Turgeon
    • 9
    • 25
  • Margaret S. Herridge
    • 13
  • Sanjay Subramanian
    • 16
  • Jacques Lacroix
    • 17
  • Neill K.J. Adhikari
    • 13
    • 18
  • Damon C. Scales
    • 13
    • 18
  • Alison Fox-Robichaud
    • 4
  • Yoanna Skrobik
    • 19
  • Richard P. Whitlock
    • 20
    • 21
  • Robert S. Green
    • 22
  • Karen K.Y. Koo
    • 23
  • Teddie Tanguay
    • 24
  • Sheldon Magder
    • 19
  • Daren K. Heyland
    • 12
  • for the Canadian Critical Care Trials Group.
  1. 1.Department of MedicineUniversité de SherbrookeSherbrookeCanada
  2. 2.Centre de Recherche du CHU de SherbrookeSherbrookeCanada
  3. 3.Centre Hospitalier Universitaire de SherbrookeSherbrookeCanada
  4. 4.Department of MedicineMcMaster UniversityHamiltonCanada
  5. 5.Department of Clinical Epidemiology and BiostatisticsMcMaster UniversityHamiltonCanada
  6. 6.Department of Medicine and Research CentreUniversité de MontréalMontrealCanada
  7. 7.Department of Medical Intensive Care MedicineUniversity Hospital AngersAngersFrance
  8. 8.Department of MedicineUniversité LavalQuebecCanada
  9. 9.Department of Anesthesiology and Critical Care Medicine, Division of Critical Care MedicineUniversité LavalQuebecCanada
  10. 10.Thoracic Surgery and Critical Care MedicineUniversity of OttawaOttawaCanada
  11. 11.Ottawa Hospital Research InstituteOttawaCanada
  12. 12.Clinical Evaluation Research UnitKingston General HospitalKingstonCanada
  13. 13.Interdepartmental Division of Critical Care MedicineUniversity of TorontoTorontoCanada
  14. 14.Department of Medicine, Kingston General HospitalQueen’s UniversityKingstonCanada
  15. 15.Division of Critical Care MedicineFaculty of Medicine and Dentistry, University of AlbertaEdmontonCanada
  16. 16.Department of Critical Care MedicineMercy St John’s Medical CenterSt LouisUSA
  17. 17.Department of Pediatrics, CHU Sainte-JustineUniversité de MontréalQuebecCanada
  18. 18.Department of Critical Care MedicineSunnybrook Health Sciences CentreTorontoCanada
  19. 19.McGill UniversityMontrealCanada
  20. 20.Department of SurgeryMcMaster UniversityHamiltonCanada
  21. 21.Population Health Research InstituteMcMaster UniversityHamiltonCanada
  22. 22.Department of Critical CareDalhousie UniversityHalifaxCanada
  23. 23.Department of Critical Care MedicineSwedish Medical CenterSeattleUSA
  24. 24.Canadian Association of Critical Care NursesLondonCanada
  25. 25.CHU de Québec - Université Laval Research Center, Population Health and Optimal Health Practices Research Unit (Trauma-Emergency-Critical Care Medicine), Université LavalQuebecCanada

Personalised recommendations