Intensive Care Medicine

, Volume 42, Issue 11, pp 1801–1804 | Cite as

Understanding the venous–arterial CO2 to arterial–venous O2 content difference ratio

  • Gustavo A. Ospina-Tascón
  • Glenn Hernández
  • Maurizio Cecconi
Understanding the Disease


Early identification of tissue hypoperfusion is a cornerstone of shock management [1]. Normal macrohemodynamic and oxygen-derived parameters do not, however, rule out the presence of tissue hypoxia [2]. In this setting, carbon dioxide (CO2)-derived variables may provide information on macro- and microvascular blood flow [3] and also on the presence of anaerobic metabolism [4, 5]. Importantly, variations in CO2 occur more rapidly than changes in lactate kinetics, making the former an attractive biomarker for monitoring, especially during the early stages of resuscitation [6, 7].

The rationale of C\({\bar{\text{v}}}\)


Anaerobic Metabolism Respiratory Quotient Content Difference Functional Capillary Density Haldane Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, Jaeschke R, Mebazaa A, Pinsky MR, Teboul JL, Vincent JL, Rhodes A (2014) Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med 40:1795–1815CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bellomo R, Reade MC, Warrillow SJ (2008) The pursuit of a high central venous oxygen saturation in sepsis: growing concerns. Crit Care 12:130CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ospina-Tascon GA, Umana M, Bermudez WF, Bautista-Rincon DF, Valencia JD, Madrinan HJ, Hernandez G, Bruhn A, Arango-Davila C, De Backer D (2016) Can venous-to-arterial carbon dioxide differences reflect microcirculatory alterations in patients with septic shock? Intensive Care Med 42:211–221CrossRefPubMedGoogle Scholar
  4. 4.
    Mekontso-Dessap A, Castelain V, Anguel N, Bahloul M, Schauvliege F, Richard C, Teboul JL (2002) Combination of venoarterial PCO2 difference with arteriovenous O2 content difference to detect anaerobic metabolism in patients. Intensive Care Med 28:272–277CrossRefPubMedGoogle Scholar
  5. 5.
    Ospina-Tascon GA, Umana M, Bermudez W, Bautista-Rincon DF, Hernandez G, Bruhn A, Granados M, Salazar B, Arango-Davila C, De Backer D (2015) Combination of arterial lactate levels and venous-arterial CO2 to arterial-venous O 2 content difference ratio as markers of resuscitation in patients with septic shock. Intensive Care Med 41:796–805CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ospina-Tascón GA, Bautista-Rincón DF, Umaña M, Tafur JD, Gutiérrez A, García AF, Bermúdez W, Granados M, Arango-Dávila C, Hernández G (2013) Persistently high venous-to-arterial carbon dioxide differences during early resuscitation are associated with poor outcomes in septic shock. Crit Care 17:R294CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Vallée F, Vallet B, Mathe O, Parraguette J, Mari A, Silva S, Samii K, Fourcade O, Genestal M (2008) Central venous-to-arterial carbon dioxide difference: an additional target for goal-directed therapy in septic shock? Intensive Care Med 34:2218–2225CrossRefPubMedGoogle Scholar
  8. 8.
    Wasserman K, Beaver WL, Whipp BJ (1990) Gas exchange theory and the lactic acidosis (anaerobic) threshold. Circulation 81[1 Supp]:II14–II30CrossRefPubMedGoogle Scholar
  9. 9.
    Randall HM Jr, Cohen JJ (1966) Anaerobic CO2 production by dog kidney in vitro. Am J Physiol 211:493–505PubMedGoogle Scholar
  10. 10.
    Stringer W, Wasserman K, Casaburi R (1995) The VCO2/VO2 relationship during heavy, constant work rate exercise reflects the rate of lactic acid accumulation. Eur J Appl Physiol Occup Physiol 72:25–31CrossRefPubMedGoogle Scholar
  11. 11.
    Breen PH, Isserles SA, Westley J, Roizen MF, Taitelman UZ (1995) Combined carbon monoxide and cyanide poisoning: a place for treatment. Anesth Analg 80:671–677PubMedGoogle Scholar
  12. 12.
    Groeneveld AB, Vermeij CG, Thijs LG (1991) Arterial and mixed venous blood acid-base balance during hypoperfusion with incremental positive end-expiratory pressure in the pig. Anesth Analg 73:576–582PubMedGoogle Scholar
  13. 13.
    Cohen IL, Sheikh FM, Perkins RJ, Feustel PJ, Foster ED (1995) Effect of hemorrhagic shock and reperfusion on the respiratory quotient in swine. Crit Care Med 23:545–552CrossRefPubMedGoogle Scholar
  14. 14.
    Austin WH, Lacombe E, Rand PW, Chatterjee M (1963) Solubility of carbon dioxide in serum from 15 to 38 C. J Appl Physiol 18:301–304PubMedGoogle Scholar
  15. 15.
    Goldman D, Bateman RM, Ellis CG (2006) Effect of decreased O2 supply on skeletal muscle oxygenation and O2 consumption during sepsis: role of heterogeneous capillary spacing and blood flow. Am J Physiol Heart Circ Physiol 290:H2277–H2285CrossRefPubMedGoogle Scholar
  16. 16.
    Raza O, Schlichtig R (2000) Metabolic component of intestinal PCO(2) during dysoxia. J Appl Physiol 89:2422–2429PubMedGoogle Scholar
  17. 17.
    Cuschieri J, Rivers EP, Donnino MW, Katilius M, Jacobsen G, Nguyen HB, Pamukov N, Horst HM (2005) Central venous-arterial carbon dioxide difference as an indicator of cardiac index. Intensive Care Med 31:818–822CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and ESICM 2016

Authors and Affiliations

  • Gustavo A. Ospina-Tascón
    • 1
  • Glenn Hernández
    • 2
  • Maurizio Cecconi
    • 3
  1. 1.Department of Intensive Care MedicineFundación Valle del Lili–Universidad ICESICaliColombia
  2. 2.Departamento de Medicina Intensiva, Facultad de MedicinaPontificia Universidad Católica de ChileSantiagoChile
  3. 3.Anaesthesia and Intensive CareSt George’s Hospital and Medical SchoolLondonUK

Personalised recommendations