Advertisement

Intensive Care Medicine

, Volume 42, Issue 3, pp 361–369 | Cite as

LiFe: a liver injury score to predict outcome in critically ill patients

  • Christin Edmark
  • Mark J. W. McPhail
  • Max Bell
  • Tony Whitehouse
  • Julia Wendon
  • Kenneth B. ChristopherEmail author
Original

Abstract

Purpose

To develop a liver function-related risk prediction tool to identify acute-on-chronic liver failure patients at greatest risk of in-hospital mortality.

Methods

The LiFe (liver, injury, failure, evaluation) score, was constructed based on the opinions of 157 intensivists within the European Society for Intensive Care Medicine. Experts were surveyed and instructed to weigh the diagnostic importance of each feature of a proposed prediction model. We performed a retrospective cohort study of 1916 patients with chronic liver disease admitted to a medical or surgical ICU between 1997, and 2011 in three large hospitals in Boston, USA, and London, UK, with arterial lactate, total bilirubin and INR drawn at ICU admission. The derivation cohort consisted of ICU patients from Brigham and Women’s Hospital and Massachusetts General Hospital in Boston (n = 945), and the validation cohort comprised patients from Kings College Hospital, London, admitted to the Liver Intensive Therapy Unit (n = 971). A clinical prediction model was derived and validated based on a logistic regression model describing the risk of in-hospital mortality as a function of the predictors (arterial lactate 0–1.9, ≥2.0–3.9, ≥4.0–5.9, ≥6.0 mg/dL; total bilirubin 0–1.9, ≥2.0–3.9, ≥4.0–5.9, ≥6.0 mg/dL; INR 0–1.9, ≥2.0–3.9, ≥4.0–5.9, ≥6.0) at ICU admission. Performance analysis of the LiFe score against SOFA, CLIF-SOFA, APACHE II and SAPS II was completed in the validation cohort of critically ill cirrhotic patients.

Results

The derivation cohort (n = 941) was 53 % male with a mean age of 65 years and an in-hospital mortality rate of 30 %. The validation cohort (n = 971) was 63 % male with mean age of 51 years and an in-hospital mortality rate of 52 %. The C statistic for the prediction model was 0.74 (95 % CI 0.70–0.77) in the derivation cohort and 0.77 (95 % CI 0.74–0.80) in the validation cohort. In the validation cohort, in-hospital mortality was 17 % in the low-risk group (0 risk score points), 28 % in the intermediate-risk group (1–3 points), 47 % in the high-risk group (4–8 points), and 77 % in the very high-risk group (>8 points). In the validation cohort, the C statistics for SOFA, CLIF-SOFA, APACHE II, and SAPS II were 0.80, 0.81, 0.77, and 0.78, respectively. Further, a significant positive correlation exists between LiFe score and acute-on-chronic liver failure grade, (r = 0.478, P < 0.001).

Conclusions

Our LiFe score calculated from arterial lactate, total bilirubin and INR at ICU admission is a simple, quick and easily understandable score that may increase clinical utility for risk prediction in ICU patients with acute-on-chronic liver failure. The LiFe score can be used in place of physiological based scores for early risk prediction in patients with chronic liver disease but is not intended to replace CLIF-SOFA as a benchmark for prognostication.

Keywords

Acute liver failure Intensive care Mortality prediction 

Notes

Acknowledgments

This manuscript is dedicated to the memory of our dear friend and colleague Nathan Edward Hellman, MD, PhD. The authors thank Shawn Murphy and Henry Chueh and the Partners Health Care Research Patient Data Registry group for facilitating use of their database.

Compliance with ethical standards

Conflicts of interest

The authors disclose no potential conflicts of interest.

Supplementary material

134_2015_4203_MOESM1_ESM.docx (40 kb)
Supplementary material 1 (DOCX 40 kb)
134_2015_4203_MOESM2_ESM.docx (19 kb)
Supplementary material 2 (DOCX 19 kb)

References

  1. 1.
    Jalan R, Gines P, Olson JC, Mookerjee RP, Moreau R, Garcia-Tsao G, Arroyo V, Kamath PS (2012) Acute-on chronic liver failure. J Hepatol 57:1336–1348PubMedCrossRefGoogle Scholar
  2. 2.
    Kramer L, Jordan B, Druml W, Bauer P, Metnitz PG, Austrian Epidemiologic Study on Intensive Care ASG (2007) Incidence and prognosis of early hepatic dysfunction in critically ill patients–a prospective multicenter study. Crit Care Med 35:1099–1104PubMedCrossRefGoogle Scholar
  3. 3.
    Lehner S, Stemmler HJ, Muck A, Braess J, Parhofer KG (2010) Prognostic parameters and risk stratification in intensive care patients with severe liver diseases. J Gastrointest Liver Dis 19:399–404Google Scholar
  4. 4.
    Poddar B, Saigal S, Kumar A, Singh RK, Azim A, Gurjar M, Baronia A (2013) Factors associated with outcome in acute liver failure in an intensive care unit. Indian J Gastroenterol 32:172–178PubMedCrossRefGoogle Scholar
  5. 5.
    Sakka SG, Reinhart K, Meier-Hellmann A (2002) Prognostic value of the indocyanine green plasma disappearance rate in critically ill patients. Chest 122:1715–1720PubMedCrossRefGoogle Scholar
  6. 6.
    Fuhrmann V, Kneidinger N, Herkner H, Heinz G, Nikfardjam M, Bojic A, Schellongowski P, Angermayr B, Schoniger-Hekele M, Madl C, Schenk P (2011) Impact of hypoxic hepatitis on mortality in the intensive care unit. Intensive Care Med 37:1302–1310PubMedCrossRefGoogle Scholar
  7. 7.
    Elias KM, Moromizato T, Gibbons FK, Christopher KB (2015) Derivation and validation of the acute organ failure score to predict outcome in critically ill patients: a cohort study. Crit Care Med 43:856–864PubMedCrossRefGoogle Scholar
  8. 8.
    Pagliaro L (2002) MELD: the end of Child-Pugh classification? J Hepatol 36:141–142PubMedCrossRefGoogle Scholar
  9. 9.
    Albers I, Hartmann H, Bircher J, Creutzfeldt W (1989) Superiority of the Child-Pugh classification to quantitative liver function tests for assessing prognosis of liver cirrhosis. Scand J Gastroenterol 24:269–276PubMedCrossRefGoogle Scholar
  10. 10.
    Boone MD, Celi LA, Ho BG, Pencina M, Curry MP, Lior Y, Talmor D, Novack V (2014) Model for end-stage liver disease score predicts mortality in critically ill cirrhotic patients. J Crit Care 29(5):881.e7–881.e13CrossRefGoogle Scholar
  11. 11.
    Theocharidou E, Pieri G, Mohammad AO, Cheung M, Cholongitas E, Agarwal B, Burroughs AK (2014) The Royal Free Hospital score: a calibrated prognostic model for patients with cirrhosis admitted to intensive care unit. Comparison with current models and CLIF-SOFA score. Am J Gastroenterol 109:554–562PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Fang JT, Tsai MH, Tian YC, Jenq CC, Lin CY, Chen YC, Lien JM, Chen PC, Yang CW (2008) Outcome predictors and new score of critically ill cirrhotic patients with acute renal failure. Nephrol Dial Transpl 23:1961–1969CrossRefGoogle Scholar
  13. 13.
    Cholongitas E, Senzolo M, Patch D, Kwong K, Nikolopoulou V, Leandro G, Shaw S, Burroughs AK (2006) Risk factors, sequential organ failure assessment and model for end-stage liver disease scores for predicting short term mortality in cirrhotic patients admitted to intensive care unit. Aliment Pharmacol Ther 23:883–893PubMedCrossRefGoogle Scholar
  14. 14.
    Zauner C, Schneeweiss B, Schneider B, Madl C, Klos H, Kranz A, Ratheiser K, Kramer L, Lenz K (2000) Short-term prognosis in critically ill patients with liver cirrhosis: an evaluation of a new scoring system. Eur J Gastroenterol Hepatol 12:517–522PubMedCrossRefGoogle Scholar
  15. 15.
    Moreau R, Jalan R, Gines P, Pavesi M, Angeli P, Cordoba J, Durand F, Gustot T, Saliba F, Domenicali M, Gerbes A, Wendon J, Alessandria C, Laleman W, Zeuzem S, Trebicka J, Bernardi M, Arroyo V, Consortium CSIotE-C (2013) Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis. Gastroenterology 144:1426–1437PubMedCrossRefGoogle Scholar
  16. 16.
    Jalan R, Saliba F, Pavesi M, Amoros A, Moreau R, Gines P, Levesque E, Durand F, Angeli P, Caraceni P, Hopf C, Alessandria C, Rodriguez E, Solis-Munoz P, Laleman W, Trebicka J, Zeuzem S, Gustot T, Mookerjee R, Elkrief L, Soriano G, Cordoba J, Morando F, Gerbes A, Agarwal B, Samuel D, Bernardi M, Arroyo V, Consortium CsiotE-C (2014) Development and validation of a prognostic score to predict mortality in patients with acute-on-chronic liver failure. J Hepatol 61:1038–1047PubMedCrossRefGoogle Scholar
  17. 17.
    McPhail MJ, Shawcross DL, Abeles RD, Chang A, Patel V, Lee GH, Abdulla M, Sizer E, Willars C, Auzinger G, Bernal W, Wendon JA (2015) Increased survival for patients with cirrhosis and organ failure in liver intensive care and validation of the chronic liver failure-sequential organ failure scoring system. Clin Gastroenterol Hepatol 13(1353–1360):e1358Google Scholar
  18. 18.
    Zager S, Mendu ML, Chang D, Bazick HS, Braun AB, Gibbons FK, Christopher KB (2011) Neighborhood poverty rate and mortality in patients receiving critical care in the academic medical center setting. Chest 139:1368–1379PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Palmer G, Reid B (2001) Evaluation of the performance of diagnosis-related groups and similar casemix systems: methodological issues. Health Serv Manag Res 14:71–81CrossRefGoogle Scholar
  20. 20.
    Hug BL, Lipsitz SR, Seger DL, Karson AS, Wright SC, Bates DW (2009) Mortality and drug exposure in a 5 year cohort of patients with chronic liver disease. Swiss Med Wkly 139:737–746PubMedGoogle Scholar
  21. 21.
    Rapoport J, Gehlbach S, Lemeshow S, Teres D (1992) Resource utilization among intensive care patients. Managed care vs traditional insurance. Arch Intern Med 152:2207–2212PubMedCrossRefGoogle Scholar
  22. 22.
    Charlson ME, Pompei P, Ales KL, MacKenzie CR (1987) A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 40:373–383PubMedCrossRefGoogle Scholar
  23. 23.
    Quan H, Sundararajan V, Halfon P, Fong A, Burnand B, Luthi JC, Saunders LD, Beck CA, Feasby TE, Ghali WA (2005) Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med Care 43:1130–1139PubMedCrossRefGoogle Scholar
  24. 24.
    Quan H, Li B, Couris CM, Fushimi K, Graham P, Hider P, Januel JM, Sundararajan V (2011) Updating and validating the Charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries. Am J Epidemiol 173:676–682PubMedCrossRefGoogle Scholar
  25. 25.
    Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med 130:461–470PubMedCrossRefGoogle Scholar
  26. 26.
    Martin GS, Mannino DM, Eaton S, Moss M (2003) The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 348(1546–1554):21Google Scholar
  27. 27.
    Moromizato T, Litonjua AA, Braun AB, Gibbons FK, Giovannucci E, Christopher KB (2014) Association of low serum 25-hydroxyvitamin D levels and sepsis in the critically ill. Crit Care Med 42:97–107PubMedCrossRefGoogle Scholar
  28. 28.
    Cooke CR, Erickson SE, Eisner MD, Martin GS (2012) Trends in the incidence of noncardiogenic acute respiratory failure: the role of race. Crit Care Med 40:1532–1538PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Thickett DR, Moromizato T, Litonjua AA, Amrein K, Quraishi SA, Lee-Sarwar KA, Mogensen KM, Purtle SW, Gibbons FK, Camargo CA Jr, Giovannucci E, Christopher KB (2015) Association between pre-hospital vitamin D status and incident acute respiratory failure in critically ill patients: a retrospective cohort study. BMJ Open Respir Res 2:e000074PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P (2004) Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care 8:R204–R212PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Bagshaw SM, Uchino S, Cruz D, Bellomo R, Morimatsu H, Morgera S, Schetz M, Tan I, Bouman C, Macedo E, Gibney N, Tolwani A, Oudemans-van Straaten HM, Ronco C, Kellum JA (2009) A comparison of observed versus estimated baseline creatinine for determination of RIFLE class in patients with acute kidney injury. Nephrol Dial Transpl 24:2739–2744CrossRefGoogle Scholar
  32. 32.
    Knaus WA, Draper EA, Wagner DP, Zimmerman JE (1985) APACHE II: a severity of disease classification system. Crit Care Med 13:818–829PubMedCrossRefGoogle Scholar
  33. 33.
    Le Gall JR, Lemeshow S, Saulnier F (1993) A new simplified acute physiology score (SAPS II) based on a European/North American multicenter study. JAMA 270:2957–2963PubMedCrossRefGoogle Scholar
  34. 34.
    Vincent JL, Moreno R, Takala J, Willatts S, De Mendonca A, Bruining H, Reinhart CK, Suter PM, Thijs LG (1996) The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the working group on sepsis-related problems of the European Society of Intensive Care Medicine. Intensive Care Med 22:707–710PubMedCrossRefGoogle Scholar
  35. 35.
    Sohn MW, Arnold N, Maynard C, Hynes DM (2006) Accuracy and completeness of mortality data in the Department of Veterans Affairs. Popul Health Metr 4:2PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845PubMedCrossRefGoogle Scholar
  37. 37.
    Anand AC, Nightingale P, Neuberger JM (1997) Early indicators of prognosis in fulminant hepatic failure: an assessment of the King’s criteria. J Hepatol 26:62–68PubMedCrossRefGoogle Scholar
  38. 38.
    Kamath PS, Wiesner RH, Malinchoc M, Kremers W, Therneau TM, Kosberg CL, D’Amico G, Dickson ER, Kim WR (2001) A model to predict survival in patients with end-stage liver disease. Hepatology 33:464–470PubMedCrossRefGoogle Scholar
  39. 39.
    Karvellas CJ, Bagshaw SM (2014) Advances in management and prognostication in critically ill cirrhotic patients. Curr Opin Crit Care 20:210–217PubMedCrossRefGoogle Scholar
  40. 40.
    Wade A (2000) Derivation versus validation. Arch Dis Child 83:459–460PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and ESICM 2016

Authors and Affiliations

  • Christin Edmark
    • 1
  • Mark J. W. McPhail
    • 2
  • Max Bell
    • 3
  • Tony Whitehouse
    • 4
  • Julia Wendon
    • 2
  • Kenneth B. Christopher
    • 5
    Email author
  1. 1.Department of Anaesthesiology, Critical Care and Surgical ServicesKarolinska University HospitalSolnaSweden
  2. 2.Liver Intensive Therapy Unit, Institute of Liver StudiesKings College HospitalLondonUK
  3. 3.Department of Anesthesiology and Intensive CareKarolinska InstitutetSolnaSweden
  4. 4.Department of Anaesthesia and Critical CareUniversity Hospital BirminghamBirminghamUK
  5. 5.The Nathan E. Hellman Memorial LaboratoryRenal Division, Brigham and Women’s HospitalBostonUSA

Personalised recommendations