Advertisement

Intensive Care Medicine

, Volume 42, Issue 5, pp 663–673 | Cite as

The "baby lung" became an adult

  • Luciano GattinoniEmail author
  • John J. Marini
  • Antonio Pesenti
  • Michael Quintel
  • Jordi Mancebo
  • Laurent Brochard
Review

Abstract

The baby lung was originally defined as the fraction of lung parenchyma that, in acute respiratory distress syndrome (ARDS), still maintains normal inflation. Its size obviously depends on ARDS severity and relates to the compliance of the respiratory system. CO2 clearance and blood oxygenation primarily occur within the baby lung. While the specific compliance suggests the intrinsic mechanical characteristics to be nearly normal, evidence from positron emission tomography suggests that at least a part of the well-aerated baby lung is inflamed. The baby lung is more a functional concept than an anatomical one; in fact, in the prone position, the baby lung “shifts” from the ventral lung regions toward the dorsal lung regions while usually increasing its size. This change is associated with better gas exchange, more homogeneously distributed trans-pulmonary forces, and a survival advantage. Positive end expiratory pressure also increases the baby lung size, both allowing better inflation of already open units and adding new pulmonary units. Viewed as surrogates of stress and strain, tidal volume and plateau pressures are better tailored to baby lung size than to ideal body weight. Although less information is available for the baby lung during spontaneous breathing efforts, the general principles regulating the safety of ventilation are also applicable under these conditions.

Keywords

ARDS Baby lung Transpulmonary pressure Prone position Stress and strain 

Notes

Acknowledgments

We thank Prof. Giacomo Bellani (Dipartimento di Medicina e Chirurgia, Università degli Studi di Milano Bicocca, Milan, Italy) and Eleonora Carlesso (Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy) for their invaluable support in the preparation of this manuscript.

Compliance with ethical standards

Conflicts of interest

None.

References

  1. 1.
    Gattinoni L, Mascheroni D, Torresin A et al (1986) Morphological response to positive end expiratory pressure in acute respiratory failure. Computerized tomography study. Intensive Care Med 12:137–142CrossRefPubMedGoogle Scholar
  2. 2.
    Gattinoni L, Pesenti A, Avalli L et al (1987) Pressure-volume curve of total respiratory system in acute respiratory failure. Computed tomographic scan study. Am Rev Respir Dis 136:730–736CrossRefPubMedGoogle Scholar
  3. 3.
    Cressoni M, Caironi P, Polli F et al (2008) Anatomical and functional intrapulmonary shunt in acute respiratory distress syndrome. Crit Care Med 36:669–675CrossRefPubMedGoogle Scholar
  4. 4.
    Bellani G, Amigoni M, Pesenti A (2011) Positron emission tomography in ARDS: a new look at an old syndrome. Minerva Anestesiol 77:439–447PubMedGoogle Scholar
  5. 5.
    Kaplan JD, Calandrino FS, Schuster DP (1991) A positron emission tomographic comparison of pulmonary vascular permeability during the adult respiratory distress syndrome and pneumonia. Am Rev Respir Dis 143:150–154CrossRefPubMedGoogle Scholar
  6. 6.
    Sandiford P, Province MA, Schuster DP (1995) Distribution of regional density and vascular permeability in the adult respiratory distress syndrome. Am J Respir Crit Care Med 151:737–742CrossRefPubMedGoogle Scholar
  7. 7.
    Zambelli V, Di Grigoli G, Scanziani M et al (2012) Time course of metabolic activity and cellular infiltration in a murine model of acid-induced lung injury. Intensive Care Med 38:694–701CrossRefPubMedGoogle Scholar
  8. 8.
    Harris RS, Venegas JG, Wongviriyawong C et al (2011) 18F-FDG uptake rate is a biomarker of eosinophilic inflammation and airway response in asthma. J Nucl Med 52:1713–1720CrossRefPubMedGoogle Scholar
  9. 9.
    Saha D, Takahashi K, de Prost N et al (2013) Micro-autoradiographic assessment of cell types contributing to 2-deoxy-2-[(18)F]fluoro-d-glucose uptake during ventilator-induced and endotoxemic lung injury. Mol Imaging Biol 15:19–27CrossRefPubMedGoogle Scholar
  10. 10.
    Musch G (2011) Positron emission tomography: a tool for better understanding of ventilator-induced and acute lung injury. Curr Opin Crit Care 17:7–12CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    de Prost N, Feng Y, Wellman T et al (2014) 18F-FDG kinetics parameters depend on the mechanism of injury in early experimental acute respiratory distress syndrome. J Nucl Med 55:1871–1877CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Musch G, Venegas JG, Bellani G et al (2007) Regional gas exchange and cellular metabolic activity in ventilator-induced lung injury. Anesthesiology 106:723–735CrossRefPubMedGoogle Scholar
  13. 13.
    Bellani G, Messa C, Guerra L et al (2009) Lungs of patients with acute respiratory distress syndrome show diffuse inflammation in normally aerated regions: a [18F]-fluoro-2-deoxy-d-glucose PET/CT study. Crit Care Med 37:2216–2222CrossRefPubMedGoogle Scholar
  14. 14.
    Bellani G, Guerra L, Musch G et al (2011) Lung regional metabolic activity and gas volume changes induced by tidal ventilation in patients with acute lung injury. Am J Respir Crit Care Med 183:1193–1199CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Cressoni M, Chiumello D, Chiurazzi C et al (2016) Lung inhomogeneities, inflation and [18F]2-fluoro-2-deoxy-d-glucose uptake rate in acute respiratory distress syndrome. Eur Respir J 47(1):233–242CrossRefPubMedGoogle Scholar
  16. 16.
    Cakar N, der Kloot TV, Youngblood M et al (2000) Oxygenation response to a recruitment maneuver during supine and prone positions in an oleic acid-induced lung injury model. Am J Respir Crit Care Med 161:1949–1956CrossRefPubMedGoogle Scholar
  17. 17.
    Guerin C, Baboi L, Richard JC (2014) Mechanisms of the effects of prone positioning in acute respiratory distress syndrome. Intensive Care Med 40:1634–1642CrossRefPubMedGoogle Scholar
  18. 18.
    Albert RK, Hubmayr RD (2000) The prone position eliminates compression of the lungs by the heart. Am J Respir Crit Care Med 161:1660–1665CrossRefPubMedGoogle Scholar
  19. 19.
    Chatte G, Sab JM, Dubois JM et al (1997) Prone position in mechanically ventilated patients with severe acute respiratory failure. Am J Respir Crit Care Med 155:473–478CrossRefPubMedGoogle Scholar
  20. 20.
    Nakos G, Tsangaris I, Kostanti E et al (2000) Effect of the prone position on patients with hydrostatic pulmonary edema compared with patients with acute respiratory distress syndrome and pulmonary fibrosis. Am J Respir Crit Care Med 161:360–368CrossRefPubMedGoogle Scholar
  21. 21.
    Lamm WJ, Graham MM, Albert RK (1994) Mechanism by which the prone position improves oxygenation in acute lung injury. Am J Respir Crit Care Med 150:184–193CrossRefPubMedGoogle Scholar
  22. 22.
    Gattinoni L, Vagginelli F, Carlesso E et al (2003) Decrease in PaCO2 with prone position is predictive of improved outcome in acute respiratory distress syndrome. Crit Care Med 31:2727–2733CrossRefPubMedGoogle Scholar
  23. 23.
    Wiener CM, Kirk W (1985) Albert RK (1990) Prone position reverses gravitational distribution of perfusion in dog lungs with oleic acid-induced injury. J Appl Physiol Bethesda Md 68:1386–1392Google Scholar
  24. 24.
    Jozwiak M, Teboul J-L, Anguel N et al (2013) Beneficial hemodynamic effects of prone positioning in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 188:1428–1433CrossRefPubMedGoogle Scholar
  25. 25.
    Richard J-C, Bregeon F, Costes N et al (2008) Effects of prone position and positive end-expiratory pressure on lung perfusion and ventilation. Crit Care Med 36:2373–2380CrossRefPubMedGoogle Scholar
  26. 26.
    Dreyfuss D, Saumon G (1998) Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med 157:294–323CrossRefPubMedGoogle Scholar
  27. 27.
    Marini JJ, Gattinoni L (2008) Propagation prevention: a complementary mechanism for “lung protective” ventilation in acute respiratory distress syndrome. Crit Care Med 36:3252–3258CrossRefPubMedGoogle Scholar
  28. 28.
    Broccard AF, Shapiro RS, Schmitz LL et al (1997) Influence of prone position on the extent and distribution of lung injury in a high tidal volume oleic acid model of acute respiratory distress syndrome. Crit Care Med 25:16–27CrossRefPubMedGoogle Scholar
  29. 29.
    Broccard A, Shapiro RS, Schmitz LL et al (2000) Prone positioning attenuates and redistributes ventilator-induced lung injury in dogs. Crit Care Med 28:295–303CrossRefPubMedGoogle Scholar
  30. 30.
    Marini JJ, Hotchkiss JR, Broccard AF (2003) Bench-to-bedside review: microvascular and airspace linkage in ventilator-induced lung injury. Crit Care Lond Engl 7:435–444CrossRefGoogle Scholar
  31. 31.
    Repessé X, Charron C, Vieillard-Baron A (2015) Acute cor pulmonale in ARDS: rationale for protecting the right ventricle. Chest 147:259–265CrossRefPubMedGoogle Scholar
  32. 32.
    Gattinoni L, Pesenti A (2005) The concept of “baby lung”. Intensive Care Med 31:776–784CrossRefPubMedGoogle Scholar
  33. 33.
    Gattinoni L, Caironi P, Pelosi P, Goodman LR (2001) What has computed tomography taught us about the acute respiratory distress syndrome? Am J Respir Crit Care Med 164:1701–1711CrossRefPubMedGoogle Scholar
  34. 34.
    Malbouisson LM, Muller JC, Constantin JM et al (2001) Computed tomography assessment of positive end-expiratory pressure-induced alveolar recruitment in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 163:1444–1450CrossRefPubMedGoogle Scholar
  35. 35.
    Jonson B, Richard JC, Straus C et al (1999) Pressure-volume curves and compliance in acute lung injury: evidence of recruitment above the lower inflection point. Am J Respir Crit Care Med 159:1172–1178CrossRefPubMedGoogle Scholar
  36. 36.
    Crotti S, Mascheroni D, Caironi P et al (2001) Recruitment and derecruitment during acute respiratory failure: a clinical study. Am J Respir Crit Care Med 164:131–140CrossRefPubMedGoogle Scholar
  37. 37.
    Richard JC, Maggiore SM, Jonson B et al (2001) Influence of tidal volume on alveolar recruitment. Respective role of PEEP and a recruitment maneuver. Am J Respir Crit Care Med 163:1609–1613CrossRefPubMedGoogle Scholar
  38. 38.
    Gattinoni L, Pelosi P, Crotti S, Valenza F (1995) Effects of positive end-expiratory pressure on regional distribution of tidal volume and recruitment in adult respiratory distress syndrome. Am J Respir Crit Care Med 151:1807–1814CrossRefPubMedGoogle Scholar
  39. 39.
    Puybasset L, Cluzel P, Gusman P et al (2000) Regional distribution of gas and tissue in acute respiratory distress syndrome. I. Consequences for lung morphology. CT Scan ARDS Study Group. Intensive Care Med 26:857–869CrossRefPubMedGoogle Scholar
  40. 40.
    Rouby JJ, Puybasset L, Cluzel P et al (2000) Regional distribution of gas and tissue in acute respiratory distress syndrome. II. Physiological correlations and definition of an ARDS Severity Score. CT Scan ARDS Study Group. Intensive Care Med 26:1046–1056CrossRefPubMedGoogle Scholar
  41. 41.
    Puybasset L, Gusman P, Muller JC et al (2000) Regional distribution of gas and tissue in acute respiratory distress syndrome. III. Consequences for the effects of positive end-expiratory pressure. CT Scan ARDS Study Group. Adult respiratory distress syndrome. Intensive Care Med 26:1215–1227CrossRefPubMedGoogle Scholar
  42. 42.
    Gattinoni L, Caironi P, Cressoni M et al (2006) Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med 354:1775–1786CrossRefPubMedGoogle Scholar
  43. 43.
    Caironi P, Cressoni M, Chiumello D et al (2010) Lung opening and closing during ventilation of acute respiratory distress syndrome. Am J Respir Crit Care Med 181:578–586CrossRefPubMedGoogle Scholar
  44. 44.
    Chiumello D, Cressoni M, Carlesso E et al (2014) Bedside selection of positive end-expiratory pressure in mild, moderate, and severe acute respiratory distress syndrome. Crit Care Med 42:252–264CrossRefPubMedGoogle Scholar
  45. 45.
    Cressoni M, Cadringher P, Chiurazzi C et al (2014) Lung inhomogeneity in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 189:149–158PubMedGoogle Scholar
  46. 46.
    Mercat A, Richard JCM, Vielle B et al (2008) Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome—A randomized controlled trial. JAMA 299:646–655CrossRefPubMedGoogle Scholar
  47. 47.
    Goligher EC, Kavanagh BP, Rubenfeld GD et al (2014) Oxygenation response to positive end-expiratory pressure predicts mortality in acute respiratory distress syndrome. A secondary analysis of the LOVS and ExPress trials. Am J Respir Crit Care Med 190:70–76CrossRefPubMedGoogle Scholar
  48. 48.
    The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342(18):1301–1308Google Scholar
  49. 49.
    Brochard L, Roudot-Thoraval F, Roupie E et al (1998) Tidal volume reduction for prevention of ventilator-induced lung injury in acute respiratory distress syndrome. The Multicenter Trail Group on Tidal Volume reduction in ARDS. Am J Respir Crit Care Med 158:1831–1838CrossRefPubMedGoogle Scholar
  50. 50.
    Brower RG, Lanken PN, MacIntyre N et al (2004) Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 351:327–336CrossRefPubMedGoogle Scholar
  51. 51.
    Stewart TE, Meade MO, Cook DJ et al (1998) Evaluation of a ventilation strategy to prevent barotrauma in patients at high risk for acute respiratory distress syndrome. Pressure- and Volume-Limited Ventilation Strategy Group. N Engl J Med 338:355–361CrossRefPubMedGoogle Scholar
  52. 52.
    Terragni PP, Rosboch G, Tealdi A et al (2007) Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med 175:160–166CrossRefPubMedGoogle Scholar
  53. 53.
    Chiumello D, Carlesso E, Cadringher P et al (2008) Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med 178:346–355CrossRefPubMedGoogle Scholar
  54. 54.
    Amato MBP, Meade MO, Slutsky AS et al (2015) Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 372:747–755CrossRefPubMedGoogle Scholar
  55. 55.
    Tobin MJ (2000) Culmination of an era in research on the acute respiratory distress syndrome. N Engl J Med 342:1360–1361CrossRefPubMedGoogle Scholar
  56. 56.
    Hager DN, Krishnan JA, Hayden DL, Brower RG (2005) Tidal volume reduction in patients with acute lung injury when plateau pressures are not high. Am J Respir Crit Care Med 172:1241–1245CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Protti A, Andreis DT, Monti M et al (2013) Lung stress and strain during mechanical ventilation: any difference between statics and dynamics? Crit Care Med 41:1046–1055CrossRefPubMedGoogle Scholar
  58. 58.
    Dreyfuss D, Soler P, Basset G, Saumon G (1988) High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 137:1159–1164CrossRefPubMedGoogle Scholar
  59. 59.
    Magder S, Verscheure S (2014) Proper reading of pulmonary artery vascular pressure tracings. Am J Respir Crit Care Med 190:1196–1198CrossRefPubMedGoogle Scholar
  60. 60.
    Hotchkiss JR, Blanch L, Naveira A et al (2001) Relative roles of vascular and airspace pressures in ventilator-induced lung injury. Crit Care Med 29:1593–1598CrossRefPubMedGoogle Scholar
  61. 61.
    Broccard AF, Hotchkiss JR, Kuwayama N et al (1998) Consequences of vascular flow on lung injury induced by mechanical ventilation. Am J Respir Crit Care Med 157:1935–1942CrossRefPubMedGoogle Scholar
  62. 62.
    Yoshida T, Torsani V, Gomes S et al (2013) Spontaneous effort causes occult pendelluft during mechanical ventilation. Am J Respir Crit Care Med 188:1420–1427CrossRefPubMedGoogle Scholar
  63. 63.
    Mascheroni D, Kolobow T, Fumagalli R et al (1988) Acute respiratory failure following pharmacologically induced hyperventilation: an experimental animal study. Intensive Care Med 15:8–14CrossRefPubMedGoogle Scholar
  64. 64.
    Yoshida T, Uchiyama A, Matsuura N et al (2012) Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model: high transpulmonary pressure associated with strong spontaneous breathing effort may worsen lung injury. Crit Care Med 40:1578–1585CrossRefPubMedGoogle Scholar
  65. 65.
    Papazian L, Forel JM, Gacouin A et al (2010) Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med 363:1107–1116CrossRefPubMedGoogle Scholar
  66. 66.
    Forel J-M, Roch A, Marin V et al (2006) Neuromuscular blocking agents decrease inflammatory response in patients presenting with acute respiratory distress syndrome. Crit Care Med 34:2749–2757CrossRefPubMedGoogle Scholar
  67. 67.
    Slutsky AS (2010) Neuromuscular blocking agents in ARDS. N Engl J Med 363:1176–1180CrossRefPubMedGoogle Scholar
  68. 68.
    Akoumianaki E, Lyazidi A, Rey N et al (2013) Mechanical ventilation-induced reverse-triggered breaths: a frequently unrecognized form of neuromechanical coupling. Chest 143:927–938CrossRefPubMedGoogle Scholar
  69. 69.
    Rittayamai N, Katsios CM, Beloncle F et al (2015) Pressure-controlled vs volume-controlled ventilation in acute respiratory failure: a physiology-based narrative and systematic review. Chest 148:340–355CrossRefPubMedGoogle Scholar
  70. 70.
    Richard JCM, Lyazidi A, Akoumianaki E et al (2013) Potentially harmful effects of inspiratory synchronization during pressure preset ventilation. Intensive Care Med 39:2003–2010CrossRefPubMedGoogle Scholar
  71. 71.
    Antonelli M, Conti G, Rocco M et al (1998) A comparison of noninvasive positive-pressure ventilation and conventional mechanical ventilation in patients with acute respiratory failure. N Engl J Med 339:429–435CrossRefPubMedGoogle Scholar
  72. 72.
    Brochard L, Lefebvre J-C, Cordioli RL et al (2014) Noninvasive ventilation for patients with hypoxemic acute respiratory failure. Semin Respir Crit Care Med 35:492–500CrossRefPubMedGoogle Scholar
  73. 73.
    Frat J-P, Thille AW, Mercat A et al (2015) High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med 372:2185–2196CrossRefPubMedGoogle Scholar
  74. 74.
    Gattinoni L, Taccone P, Mascheroni D et al (2013) Prone positioning in acute respiratory failure. In: Tobin MJ (ed) Principles and practice of mechanical ventilation, 3rd edn. McGraw Hill, New York, pp 1169–1181Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and ESICM 2016

Authors and Affiliations

  • Luciano Gattinoni
    • 1
    • 2
    Email author
  • John J. Marini
    • 3
  • Antonio Pesenti
    • 1
    • 2
  • Michael Quintel
    • 4
  • Jordi Mancebo
    • 5
  • Laurent Brochard
    • 6
    • 7
  1. 1.Dipartimento di Anestesia, Rianimazione ed Emergenza UrgenzaFondazione IRCCS Cà Granda—Ospedale Maggiore PoliclinicoMilanItaly
  2. 2.Dipartimento di Fisiopatologia Medico-Chirurgica e dei TrapiantiUniversità degli Studi di MilanoMilanItaly
  3. 3.Department of MedicineUniversity of MinnesotaSaint PaulUSA
  4. 4.Department of Anesthesiology, Emergency and Intensive Care MedicineGeorg-August University of GöttingenGöttingenGermany
  5. 5.Servicio de Medicina IntensivaHospital de la Santa Creu i Sant PauBarcelonaSpain
  6. 6.Keenan Research Centre, Li Ka Shing Knowledge Insitute, Critical Care DepartmentSt. Michael’s HospitalTorontoCanada
  7. 7.Interdepartmental Division of Critical Care MedicineTorontoCanada

Personalised recommendations