Advertisement

Intensive Care Medicine

, Volume 42, Issue 5, pp 853–861 | Cite as

Diaphragmatic dysfunction in patients with ICU-acquired weakness and its impact on extubation failure

  • Boris Jung
  • Pierre Henri Moury
  • Martin Mahul
  • Audrey de Jong
  • Fabrice Galia
  • Albert Prades
  • Pierre Albaladejo
  • Gerald Chanques
  • Nicolas Molinari
  • Samir JaberEmail author
Original

Abstract

Purpose

Diaphragm function is rarely studied in intensive care patients with unit-acquired weakness (ICUAW) in whom weaning from mechanical ventilation is challenging. The aim of the present study was to evaluate the diaphragm function and the outcome using a multimodal approach in ICUAW patients.

Methods

Patients were eligible if they were diagnosed for ICUAW [Medical Research Council (MRC) Score <48], mechanically ventilated for at least 48 h and were undergoing a spontaneous breathing trial. Diaphragm function was assessed using magnetic stimulation of the phrenic nerves (change in endotracheal tube pressure), maximal inspiratory pressure and ultrasonographically (thickening fraction). Diaphragmatic dysfunction was defined by a change in endotracheal tube pressure below 11 cmH2O. The endpoints were to describe the correlation between diaphragm function and ICUAW and its impact on extubation.

Results

Among 185 consecutive patients ventilated for more than 48 h, 40 (22 %) with a MRC score of 31 [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36] were included. Diaphragm dysfunction was observed with ICUAW in 32 patients (80 %). Change in endotracheal tube pressure and MRC score were not correlated. Maximal inspiratory pressure was correlated with change in endotracheal tube pressure after magnetic stimulation of the phrenic nerves (r = 0.43; p = 0.005) and MRC score (r = 0.34; p = 0.02). Thickening fraction was less than 20 % in 70 % of the patients and was statistically correlated with change in endotracheal tube pressure (r = 0.4; p = 0.02) but not with MRC score. Half of the patients could be extubated without needing reintubation within 72 h.

Conclusion

Diaphragm dysfunction is frequent in patients with ICU-acquired weakness (80 %) but poorly correlated with the ICU-acquired weakness MRC score. Half of the patients with ICU-acquired weakness were successfully extubated. Half of the patients who failed the weaning process died during the ICU stay.

Keywords

Diaphragmatic dysfunction Mechanical ventilation Weaning Intensive care unit-acquired weakness Respiratory muscles 

Notes

Compliance with ethical standards

Conflicts of interest

Boris Jung reports personal fees from Merck (Whitehouse Station, NJ, USA) and Astellas (Tokyo, Japan) without relations with the present study. Samir Jaber reports personal fees from Maquet, Draeger, Hamilton Medical, Fisher Paykel and Abbott without relations with the present study. Pierre Henri Moury, Martin Mahul, Audrey De Jong, Fabrice Gallia, Albert Prades, Pierre Albaladejo, Gerald Chanques and Nicolas Molinari have nothing to disclose related to the subject of the article.

Source of funding

This study was supported by University Hospital of Montpellier.

Supplementary material

134_2015_4125_MOESM1_ESM.pptx (52 kb)
Supplementary material 1 (PPTX 52 kb)
134_2015_4125_MOESM2_ESM.docx (117 kb)
Supplementary material 2 (DOCX 117 kb)

References

  1. 1.
    Fan E, Cheek F, Chlan L et al (2014) An official American Thoracic Society Clinical Practice guideline: the diagnosis of intensive care unit-acquired weakness in adults. Am J Respir Crit Care Med 190:1437–1446. doi: 10.1164/rccm.201411-2011ST CrossRefPubMedGoogle Scholar
  2. 2.
    Eikermann M, Latronico N (2013) What is new in prevention of muscle weakness in critically ill patients? Intensive Care Med 39:2200–2203. doi: 10.1007/s00134-013-3132-4 CrossRefPubMedGoogle Scholar
  3. 3.
    Kress JP, Hall JB (2014) ICU-acquired weakness and recovery from critical illness. N Engl J Med 370:1626–1635. doi: 10.1056/NEJMra1209390 CrossRefPubMedGoogle Scholar
  4. 4.
    De Jonghe B, Sharshar T, Lefaucheur J-P et al (2002) Paresis acquired in the intensive care unit: a prospective multicenter study. JAMA 288:2859–2867CrossRefPubMedGoogle Scholar
  5. 5.
    Tennilä A, Salmi T, Pettilä V et al (2000) Early signs of critical illness polyneuropathy in ICU patients with systemic inflammatory response syndrome or sepsis. Intensive Care Med 26:1360–1363CrossRefPubMedGoogle Scholar
  6. 6.
    De Jonghe B, Bastuji-Garin S, Sharshar T et al (2004) Does ICU-acquired paresis lengthen weaning from mechanical ventilation? Intensive Care Med 30:1117–1121. doi: 10.1007/s00134-004-2174-z CrossRefPubMedGoogle Scholar
  7. 7.
    Herridge MS, Tansey CM, Matté A et al (2011) Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med 364:1293–1304. doi: 10.1056/NEJMoa1011802 CrossRefPubMedGoogle Scholar
  8. 8.
    Hermans G, Van Mechelen H, Clerckx B et al (2014) Acute outcomes and 1 year mortality of ICU-acquired weakness: a cohort study and propensity matched analysis. Am J Respir Crit Care Med. doi: 10.1164/rccm.201312-2257OC PubMedGoogle Scholar
  9. 9.
    Perren A, Brochard L (2013) Managing the apparent and hidden difficulties of weaning from mechanical ventilation. Intensive Care Med 39:1885–1895. doi: 10.1007/s00134-013-3014-9 CrossRefPubMedGoogle Scholar
  10. 10.
    Goligher EC, Fan E, Herridge MS et al (2015) Evolution of diaphragm thickness during mechanical ventilation: impact of inspiratory effort. Am J Respir Crit Care Med. doi: 10.1164/rccm.201503-0620OC Google Scholar
  11. 11.
    Divangahi M, Matecki S, Dudley RWR et al (2004) Preferential diaphragmatic weakness during sustained Pseudomonas aeruginosa lung infection. Am J Respir Crit Care Med 169:679–686CrossRefPubMedGoogle Scholar
  12. 12.
    Jung B, Nougaret S, Conseil M et al (2014) Sepsis is associated with a preferential diaphragmatic atrophy: a critically ill patient study using tridimensional computed tomography. Anesthesiology 120:1182–1191. doi: 10.1097/ALN.0000000000000201 CrossRefPubMedGoogle Scholar
  13. 13.
    Baldwin CE, Bersten AD (2014) Alterations in respiratory and limb muscle strength and size in patients with sepsis who are mechanically ventilated. Phys Ther 94:68–82CrossRefPubMedGoogle Scholar
  14. 14.
    Levine S, Nguyen T, Taylor N et al (2008) Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med 358:1327–1335CrossRefPubMedGoogle Scholar
  15. 15.
    Jaber S, Petrof BJ, Jung B et al (2011) Rapidly progressive diaphragmatic weakness and injury during mechanical ventilation in humans. Am J Respir Crit Care Med 183:364–371. doi: 10.1164/rccm.201004-0670OC CrossRefPubMedGoogle Scholar
  16. 16.
    Demoule A, Jung B, Prodanovic H et al (2013) Diaphragm dysfunction on admission to ICU: prevalence, risk factors and prognostic impact—a prospective study. Am J Respir Crit Care Med. doi: 10.1164/rccm.201209-1668OC PubMedGoogle Scholar
  17. 17.
    Picard M, Jung B, Liang F et al (2012) Mitochondrial dysfunction and lipid accumulation in the human diaphragm during mechanical ventilation. Am J Respir Crit Care Med 186:1140–1149. doi: 10.1164/rccm.201206-0982OC CrossRefPubMedGoogle Scholar
  18. 18.
    Mrozek S, Jung B, Petrof BJ et al (2012) Rapid onset of specific diaphragm weakness in a healthy murine model of ventilator-induced diaphragmatic dysfunction. Anesthesiology 117:560–567. doi: 10.1097/ALN.0b013e318261e7f8 CrossRefPubMedGoogle Scholar
  19. 19.
    American Thoracic Society/European Respiratory Society (2002) ATS/ERS statement on respiratory muscle testing. Am J Respir Crit Care Med 166:518–624. doi: 10.1164/rccm.166.4.518 CrossRefGoogle Scholar
  20. 20.
    Santos PD, Teixeira C, Savi A et al (2012) The critical illness polyneuropathy in septic patients with prolonged weaning from mechanical ventilation: Is the diaphragm also affected? A pilot study. Respir Care 57:1594–1601. doi: 10.4187/respcare.01396 CrossRefPubMedGoogle Scholar
  21. 21.
    Kleyweg RP, van der Meché FG, Schmitz PI (1991) Interobserver agreement in the assessment of muscle strength and functional abilities in Guillain–Barré syndrome. Muscle Nerve 14:1103–1109. doi: 10.1002/mus.880141111 CrossRefPubMedGoogle Scholar
  22. 22.
    Thille AW, Richard J-CM, Brochard L (2013) The decision to extubate in the intensive care unit. Am J Respir Crit Care Med 187:1294–1302. doi: 10.1164/rccm.201208-1523CI CrossRefPubMedGoogle Scholar
  23. 23.
    Deye N, Lellouche F, Maggiore SM et al (2013) The semi-seated position slightly reduces the effort to breathe during difficult weaning. Intensive Care Med 39:85–92. doi: 10.1007/s00134-012-2727-5 CrossRefPubMedGoogle Scholar
  24. 24.
    Steier J, Kaul S, Seymour J et al (2007) The value of multiple tests of respiratory muscle strength. Thorax 62:975–980. doi: 10.1136/thx.2006.072884 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Matamis D, Soilemezi E, Tsagourias M et al (2013) Sonographic evaluation of the diaphragm in critically ill patients. Technique and clinical applications. Intensive Care Med 39:801–810. doi: 10.1007/s00134-013-2823-1 CrossRefPubMedGoogle Scholar
  26. 26.
    Goligher EC, Laghi F, Detsky ME et al (2015) Measuring diaphragm thickness with ultrasound in mechanically ventilated patients: feasibility, reproducibility and validity. Intensive Care Med 41:642–649. doi: 10.1007/s00134-015-3687-3 CrossRefPubMedGoogle Scholar
  27. 27.
    DiNino E, Gartman EJ, Sethi JM, McCool FD (2014) Diaphragm ultrasound as a predictor of successful extubation from mechanical ventilation. Thorax 69:431–435. doi: 10.1136/thoraxjnl-2013-204111 CrossRefGoogle Scholar
  28. 28.
    Boles JM, Bion J, Connors A et al (2007) Weaning from mechanical ventilation. Eur Respir J 29:1033–1056CrossRefPubMedGoogle Scholar
  29. 29.
    Jaber S, Antonelli M (2014) Preventive or curative postoperative noninvasive ventilation after thoracic surgery: still a grey zone? Intensive Care Med 40:280–283. doi: 10.1007/s00134-014-3213-z CrossRefPubMedGoogle Scholar
  30. 30.
    Jaber S, Chanques G, Jung B (2010) Postoperative noninvasive ventilation. Anesthesiology 112:453–461. doi: 10.1097/ALN.0b013e3181c5e5f2 CrossRefPubMedGoogle Scholar
  31. 31.
    De Jong A, Jung B, Jaber S (2014) Intubation in the ICU: we could improve our practice. Crit Care 18:209. doi: 10.1186/cc13776 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    McCool FD, Tzelepis GE (2012) Dysfunction of the diaphragm. N Engl J Med 366:932–942CrossRefPubMedGoogle Scholar
  33. 33.
    Kim WY, Suh HJ, Hong SB et al (2011) Diaphragm dysfunction assessed by ultrasonography: influence on weaning from mechanical ventilation. Crit Care Med 39:2627–2630CrossRefPubMedGoogle Scholar
  34. 34.
    Umbrello M, Formenti P, Longhi D et al (2015) Diaphragm ultrasound as indicator of respiratory effort in critically ill patients undergoing assisted mechanical ventilation: a pilot clinical study. Crit Care 19:161. doi: 10.1186/s13054-015-0894-9 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Connolly BA, Jones GD, Curtis AA et al (2013) Clinical predictive value of manual muscle strength testing during critical illness: an observational cohort study. Crit Care 17:R229. doi: 10.1186/cc13052 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ali NA, O’Brien JM, Hoffmann SP et al (2008) Acquired weakness, handgrip strength, and mortality in critically ill patients. Am J Respir Crit Care Med 178:261–268. doi: 10.1164/rccm.200712-1829OC CrossRefPubMedGoogle Scholar
  37. 37.
    Hermans G, Clerckx B, Vanhullebusch T et al (2012) Interobserver agreement of Medical Research Council Sum-Score and handgrip strength in the intensive care unit. Muscle Nerve 45:18–25. doi: 10.1002/mus.22219 CrossRefPubMedGoogle Scholar
  38. 38.
    Watson AC, Hughes PD, Harris ML et al (2001) Measurement of twitch transdiaphragmatic, esophageal, and endotracheal tube pressure with bilateral anterolateral magnetic phrenic nerve stimulation in patients in the intensive care unit. Crit Care Med 29:1325–1331CrossRefPubMedGoogle Scholar
  39. 39.
    Laghi F, Cattapan SE, Jubran A et al (2003) Is weaning failure caused by low-frequency fatigue of the diaphragm? Am J Respir Crit Care Med 167:120–127. doi: 10.1164/rccm.200210-1246OC CrossRefPubMedGoogle Scholar
  40. 40.
    Vivier E, Mekontso Dessap A, Dimassi S et al (2012) Diaphragm ultrasonography to estimate the work of breathing during non-invasive ventilation. Intensive Care Med 38:1–8CrossRefGoogle Scholar
  41. 41.
    Batt J, dos Santos CC, Cameron JI, Herridge MS (2013) Intensive care unit-acquired weakness: clinical phenotypes and molecular mechanisms. Am J Respir Crit Care Med 187:238–246. doi: 10.1164/rccm.201205-0954SO CrossRefPubMedGoogle Scholar
  42. 42.
    Wollersheim T, Woehlecke J, Krebs M et al (2014) Dynamics of myosin degradation in intensive care unit-acquired weakness during severe critical illness. Intensive Care Med 40:528–538. doi: 10.1007/s00134-014-3224-9 CrossRefPubMedGoogle Scholar
  43. 43.
    Jaber S, Jung B, Matecki S, Petrof BJ (2011) Clinical review: ventilator-induced diaphragmatic dysfunction–human studies confirm animal model findings! Crit Care Lond Engl 15:206. doi: 10.1186/cc10023 CrossRefGoogle Scholar
  44. 44.
    De Jonghe B, Bastuji-Garin S, Durand M-C et al (2007) Respiratory weakness is associated with limb weakness and delayed weaning in critical illness*. Crit Care Med 35:2007–2015. doi: 10.1097/01.ccm.0000281450.01881.d8 CrossRefPubMedGoogle Scholar
  45. 45.
    Le Gall JR, Lemeshow S, Saulnier F (1993) A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA 270:2957–2963CrossRefPubMedGoogle Scholar
  46. 46.
    Vincent JL, Moreno R, Takala J et al (1996) The SOFA (Sepsis-related Organ Failure Assessment) Score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med 22:707–710CrossRefPubMedGoogle Scholar
  47. 47.
    Gottesman E, McCool FD (1997) Ultrasound evaluation of the paralyzed diaphragm. Am J Respir Crit Care Med 155:1570–1574. doi: 10.1164/ajrccm.155.5.9154859 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and ESICM 2015

Authors and Affiliations

  • Boris Jung
    • 1
    • 2
  • Pierre Henri Moury
    • 1
  • Martin Mahul
    • 1
  • Audrey de Jong
    • 1
  • Fabrice Galia
    • 1
  • Albert Prades
    • 1
  • Pierre Albaladejo
    • 3
    • 4
  • Gerald Chanques
    • 1
    • 2
  • Nicolas Molinari
    • 2
    • 5
  • Samir Jaber
    • 1
    • 2
    Email author
  1. 1.Intensive Care Unit, Anesthesia and Critical Care DepartmentSaint Eloi Teaching HospitalMontpellier Cedex 5France
  2. 2.Centre National de la Recherche Scientifique (CNRS 9214), Institut National de la Santé et de la Recherche Médicale (INSERM U-1046)Montpellier UniversityMontpellierFrance
  3. 3.Pôle Anesthésie-RéanimationUJF-GrenobleGrenobleFrance
  4. 4.Université Grenoble Alpes/CNRS, ThEMAS TIMC UMR 5525GrenobleFrance
  5. 5.Department of StatisticsUniversity of Montpellier Lapeyronie HospitalMontpellierFrance

Personalised recommendations