Advertisement

Intensive Care Medicine

, Volume 41, Issue 12, pp 2076–2086 | Cite as

Did studies on HFOV fail to improve ARDS survival because they did not decrease VILI? On the potential validity of a physiological concept enounced several decades ago

  • Didier DreyfussEmail author
  • Jean-Damien Ricard
  • Stéphane Gaudry
Review

Abstract

High frequency oscillatory ventilation (HFOV) has been the subject of extensive physiological research for 30 years and even more so of an intense debate on its potential usefulness in the treatment of acute respiratory distress syndrome (ARDS). This technique has been enthusiastically promoted by some teams until two high-quality randomized clinical trials in adults with ARDS showed that HFOV did not decrease and might have even increased mortality. As a consequence of these results, physiological concepts such as atelectrauma and biotrauma on which ARDS management with HFOV were based should be reexamined. In contrast, the concept of volutrauma, i.e., end-inspiratory overdistension, as the cause for ventilator-induced lung injury might help explain excess mortality during mechanical ventilation of ARDS when inspiratory volumes are too high. This is what might have happened during one of the recent studies on HFOV. Failure of this complex technique must be put in perspective with the dramatic improvement of ARDS prognosis with very simple interventions such as tidal volume reduction, early pharmacological paralysis, and prone positioning which all limited end-inspiratory volume.

Keywords

HFOV Ventilator-induced lung injury Volutrauma Atelectrauma PEEP 

Notes

Compliance with ethical standards

Conflicts of interest

All authors have no conflict of interest related to this article.

References

  1. 1.
    Ferguson ND, Cook DJ, Guyatt GH, Mehta S, Hand L, Austin P et al (2013) High-frequency oscillation in early acute respiratory distress syndrome. N Engl J Med. doi: 10.1056/NEJMoa1215554 PubMedCentralGoogle Scholar
  2. 2.
    Ferguson ND, Slutsky AS (2008) Point: high-frequency ventilation is the optimal physiological approach to ventilate ARDS patients. J Appl Physiol 104(4):1230–1231CrossRefPubMedGoogle Scholar
  3. 3.
    Froese A, Ferguson N (2013) High-frequency ventilation. In: Tobin M (ed) Principles and practice of mechanical ventilation, 3rd edn. McGraw Hill, New York, pp 495–516Google Scholar
  4. 4.
    Chang HK (1984) Mechanisms of gas transport during ventilation by high-frequency oscillation. J Appl Physiol Respir Environ Exerc Physiol 56(3):553–563PubMedGoogle Scholar
  5. 5.
    Cha EJ, Chow E, Chang HK, Yamashiro SM (1988) Lung hyperinflation in isolated dog lungs during high-frequency oscillation. J Appl Physiol 65(3):1172–1179PubMedGoogle Scholar
  6. 6.
    The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342(18):1301–8Google Scholar
  7. 7.
    Papazian L, Forel JM, Gacouin A, Penot-Ragon C, Perrin G, Loundou A et al (2010) Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med 363(12):1107–1116CrossRefPubMedGoogle Scholar
  8. 8.
    Guerin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T et al (2013) Prone positioning in severe acute respiratory distress syndrome. N Engl J Med 368(23):2159–2168CrossRefPubMedGoogle Scholar
  9. 9.
    Dreyfuss D (2004) To consent or not to consent, that is (not) the (sole) question. “And there is nothing new under the sun”. Kohelet (also known as Ecclesiastes), 1:9. Bible. Intensive Care Med 30(2):180–182CrossRefPubMedGoogle Scholar
  10. 10.
    Dreyfuss D (2004) Beyond randomized, controlled trials. Curr Opin Crit Care 10(6):574–578CrossRefPubMedGoogle Scholar
  11. 11.
    Dreyfuss D (2004) Is it better to consent to an RCT or to care? Muetadeltaepsilonnu alphagammaalphanu (“nothing in excess”). Intensive Care Med 31:345–355CrossRefPubMedGoogle Scholar
  12. 12.
    The HIFI Study Group (1989) High-frequency oscillatory ventilation compared with conventional mechanical ventilation in the treatment of respiratory failure in preterm infants. N Engl J Med 320(2):88–93CrossRefGoogle Scholar
  13. 13.
    Cools F, Askie LM, Offringa M, Asselin JM, Calvert SA, Courtney SE et al (2010) Elective high-frequency oscillatory versus conventional ventilation in preterm infants: a systematic review and meta-analysis of individual patients’ data. Lancet 375(9731):2082–2091CrossRefPubMedGoogle Scholar
  14. 14.
    Gupta P, Green JW, Tang X, Gall CM, Gossett JM, Rice TB et al (2014) Comparison of high-frequency oscillatory ventilation and conventional mechanical ventilation in pediatric respiratory failure. JAMA Pediatr 168(3):243–249CrossRefPubMedGoogle Scholar
  15. 15.
    Dreyfuss D, Ricard JD, Gaudry S (2015) Ventilation par oscillations à haute fréquence: rideau? Réanimation 24:4–10CrossRefGoogle Scholar
  16. 16.
    Amato MBP, Barbas CSV, Medeiros DM, Schettino GDPP, Filho GL, Kairalla RA et al (1995) Beneficial effects of the “open lung approach” with low distending pressures in acute respiratory distress syndrome. Am J Respir Crit Care Med 152:1835–1846CrossRefPubMedGoogle Scholar
  17. 17.
    Ware LB, Matthay MA (2000) The acute respiratory distress syndrome. N Engl J Med 342(18):1334–1349CrossRefPubMedGoogle Scholar
  18. 18.
    Hamilton PP, Onayemi A, Smyth JA, Gillan JE, Cutz E, Froese AB et al (1983) Comparison of conventional and high-frequency ventilation: oxygenation and lung pathology. J Appl Physiol 55:131–138PubMedGoogle Scholar
  19. 19.
    McCulloch PR, Forkert PG, Froese AB (1988) Lung volume maintenance prevents lung injury during high frequency oscillatory ventilation in surfactant-deficient rabbits. Am Rev Respir Dis 137:1185–1192CrossRefPubMedGoogle Scholar
  20. 20.
    Fan E, Needham DM, Stewart TE (2005) Ventilatory management of acute lung injury and acute respiratory distress syndrome. JAMA 294(22):2889–2896CrossRefPubMedGoogle Scholar
  21. 21.
    Tierney DF (2003) Ventilator-induced lung injury occurs in rats, but does it occur in humans? Am J Respir Crit Care Med 168(12):1414–1415CrossRefPubMedGoogle Scholar
  22. 22.
    Dreyfuss D, Saumon G (1998) Ventilator-induced lung injury: lessons from experimental studies (state of the art). Am J Respir Crit Care Med 157:1–30CrossRefGoogle Scholar
  23. 23.
    Parker JC, Hernandez LA, Peevy KJ (1993) Mechanisms of ventilator-induced lung injury. Crit Care Med 21:131–143CrossRefPubMedGoogle Scholar
  24. 24.
    Slutsky AS, Ranieri VM (2013) Ventilator-induced lung injury. N Engl J Med 369(22):2126–2136CrossRefPubMedGoogle Scholar
  25. 25.
    Webb HH, Tierney DF (1974) Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis 110:556–565PubMedGoogle Scholar
  26. 26.
    Dreyfuss D, Basset G, Soler P, Saumon G (1985) Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats. Am Rev Respir Dis 132:880–884PubMedGoogle Scholar
  27. 27.
    Dreyfuss D, Soler P, Basset G, Saumon G (1988) High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 137(5):1159–1164CrossRefPubMedGoogle Scholar
  28. 28.
    Dreyfuss D, Saumon G (1992) Barotrauma is volutrauma, but which volume is the one responsible? Intensive Care Med 18:139–141CrossRefPubMedGoogle Scholar
  29. 29.
    Dreyfuss D, Saumon G (1993) Role of tidal volume, FRC and end-inspiratory volume in the development of pulmonary edema following mechanical ventilation. Am Rev Respir Dis 148:1194–1203CrossRefPubMedGoogle Scholar
  30. 30.
    Egan EA, Nelson RM, Olver RE (1976) Lung inflation and alveolar permeability to non-electrolytes in the adult sheep in vivo. J Physiol 260:409–424PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Tremblay L, Valenza F, Ribeiro SP, Li J, Slutsky AS (1997) Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 99:944–952PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Mead J, Takishima T, Leith D (1970) Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol 28:596–608PubMedGoogle Scholar
  33. 33.
    Argiras EP, Blakeley CR, Dunnill MS, Otremski S, Sykes MK (1987) High peep decreases hyaline membrane formation in surfactant deficient lungs. Br J Anaesth 59:1278–1285CrossRefPubMedGoogle Scholar
  34. 34.
    Sandhar BK, Niblett DJ, Argiras EP, Dunnill MS, Sykes MK (1988) Effects of positive end-expiratory pressure on hyaline membrane formation in a rabbit model of the neonatal respiratory distress syndrome. Intensive Care Med 14:538–546CrossRefPubMedGoogle Scholar
  35. 35.
    Muscedere JG, Mullen JBM, Gan K, Bryan AC, Slutsky AS (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 149:1327–1334CrossRefPubMedGoogle Scholar
  36. 36.
    Sohma A, Brampton WJ, Dunnill MS, Sykes MK (1992) Effect of ventilation with positive end-expiratory pressure on the development of lung damage in experimental acid aspiration pneumonia in the rabbit. Intensive Care Med 18:112–117CrossRefPubMedGoogle Scholar
  37. 37.
    Hubmayr RD (2002) Perspective on lung injury and recruitment: a skeptical look at the opening and collapse story. Am J Respir Crit Care Med 165(12):1647–1653CrossRefPubMedGoogle Scholar
  38. 38.
    de Prost N, Saumon G, Dreyfuss D (2011) Modeling the time-course of ventilator-induced lung injury: what can we learn from interspecies discrepancies? Intensive Care Med 37(12):1901–1903CrossRefPubMedGoogle Scholar
  39. 39.
    The National Heart, Lung, and Blood Institute ARDS Clinical Trials Network (2004) Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 351(4):327–336Google Scholar
  40. 40.
    Meade MO, Cook DJ, Guyatt GH, Slutsky AS, Arabi YM, Cooper DJ et al (2008) Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299(6):637–645CrossRefPubMedGoogle Scholar
  41. 41.
    Mercat A, Richard JC, Vielle B, Jaber S, Osman D, Diehl JL et al (2008) Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299(6):646–655CrossRefPubMedGoogle Scholar
  42. 42.
    Young D, Lamb SE, Shah S, Mackenzie I, Tunnicliffe W, Lall R et al (2013) High-frequency oscillation for acute respiratory distress syndrome. N Engl J Med. 368:806–813CrossRefPubMedGoogle Scholar
  43. 43.
    Dreyfuss D, Ricard JD, Saumon G (2003) On the physiologic and clinical relevance of lung-borne cytokines during ventilator-induced lung injury. Am J Respir Crit Care Med 167(11):1467–1471CrossRefPubMedGoogle Scholar
  44. 44.
    Ricard JD, Dreyfuss D, Saumon G (2001) Production of inflammatory cytokines in ventilator-induced lung injury: a reappraisal. Am J Respir Crit Care Med 163(5):1176–1180CrossRefPubMedGoogle Scholar
  45. 45.
    Kirby RR, Downs JB, Civetta JM, Modell JH, Dannemiller F, Klein EF et al (1975) High level positive end expiratory pressure (PEEP) in acute respiratory insufficiency. Chest 67:156–163CrossRefPubMedGoogle Scholar
  46. 46.
    Briel M, Meade M, Mercat A, Brower RG, Talmor D, Walter SD et al (2010) Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA 303(9):865–873CrossRefPubMedGoogle Scholar
  47. 47.
    Sud S, Sud M, Friedrich JO, Meade MO, Ferguson ND, Wunsch H et al (2010) High frequency oscillation in patients with acute lung injury and acute respiratory distress syndrome (ARDS): systematic review and meta-analysis. BMJ 340:c2327CrossRefPubMedGoogle Scholar
  48. 48.
    Minneci PC, Eichacker PQ, Danner RL, Banks SM, Natanson C, Deans KJ (2008) The importance of usual care control groups for safety monitoring and validity during critical care research. Intensive Care Med 34(5):942–947CrossRefPubMedGoogle Scholar
  49. 49.
    Silverman HJ, Miller FG (2004) Control group selection in critical care randomized controlled trials evaluating interventional strategies: an ethical assessment. Crit Care Med 32(3):852–857CrossRefPubMedGoogle Scholar
  50. 50.
    Fabry B, Maksym GN, Butler JP, Glogauer M, Navajas D, Fredberg JJ (2001) Scaling the microrheology of living cells. Phys Rev Lett 87(14):148102CrossRefPubMedGoogle Scholar
  51. 51.
    Huh D, Fujioka H, Tung YC, Futai N, Paine R 3rd, Grotberg JB et al (2007) Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems. Proc Natl Acad Sci USA 104(48):18886–18891PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Hussein O, Walters B, Stroetz R, Valencia P, McCall D, Hubmayr RD (2013) Biophysical determinants of alveolar epithelial plasma membrane wounding associated with mechanical ventilation. Am J Physiol Lung Cell Mol Physiol 305(7):L478–L484PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Brusasco V, Beck KC, Crawford M, Rehder K (1986) Resonant amplification of delivered volume during high-frequency ventilation. J Appl Physiol (1985) 60(3):885–892Google Scholar
  54. 54.
    Amato MB, Meade MO, Slutsky AS, Brochard L, Costa EL, Schoenfeld DA et al (2015) Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 372(8):747–755CrossRefPubMedGoogle Scholar
  55. 55.
    Zivanovic S, Peacock J, Alcazar-Paris M, Lo JW, Lunt A, Marlow N et al (2014) Late outcomes of a randomized trial of high-frequency oscillation in neonates. N Engl J Med 370(12):1121–1130PubMedCentralCrossRefPubMedGoogle Scholar
  56. 56.
    Guervilly C, Forel JM, Hraiech S, Demory D, Allardet-Servent J, Adda M et al (2012) Right ventricular function during high-frequency oscillatory ventilation in adults with acute respiratory distress syndrome. Crit Care Med 40(5):1539–1545CrossRefPubMedGoogle Scholar
  57. 57.
    Jardin F, Vieillard-Baron A (2007) Is there a safe plateau pressure in ARDS? The right heart only knows. Intensive Care Med 33(3):444–447CrossRefPubMedGoogle Scholar
  58. 58.
    Papazian L, Gainnier M, Marin V, Donati S, Arnal JM, Demory D et al (2005) Comparison of prone positioning and high-frequency oscillatory ventilation in patients with acute respiratory distress syndrome. Crit Care Med 33(10):2162–2171CrossRefPubMedGoogle Scholar
  59. 59.
    Patroniti N, Zangrillo A, Pappalardo F, Peris A, Cianchi G, Braschi A et al (2011) The Italian ECMO network experience during the 2009 influenza A(H1N1) pandemic: preparation for severe respiratory emergency outbreaks. Intensive Care Med 37(9):1447–1457CrossRefPubMedGoogle Scholar
  60. 60.
    Talmor D, Sarge T, Malhotra A, O’Donnell CR, Ritz R, Lisbon A et al (2008) Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med 359(20):2095–2104PubMedCentralCrossRefPubMedGoogle Scholar
  61. 61.
    de Prost N, Dreyfuss D, Saumon G (2007) Evaluation of two-way protein fluxes across the alveolo-capillary membrane by scintigraphy in rats: effect of lung inflation. J Appl Physiol (1985) 102(2):794–802CrossRefGoogle Scholar
  62. 62.
    Parker JC, Townsley MI, Rippe B, Taylor AE, Thigpen J (1984) Increased microvascular permeability in dog lungs due to high airway pressures. J Appl Physiol 57:1809–1816PubMedGoogle Scholar
  63. 63.
    Malhotra A, Drazen JM (2013) High-frequency oscillatory ventilation on shaky ground. N Engl J Med 368(9):863–865PubMedCentralCrossRefPubMedGoogle Scholar
  64. 64.
    Broccard A, Shapiro RS, Schmitz LL, Adams AB, Nahum A, Marini JJ (2000) Prone positioning attenuates and redistributes ventilator-induced lung injury in dogs. Crit Care Med 28(2):295–303CrossRefPubMedGoogle Scholar
  65. 65.
    Broccard AF, Shapiro RS, Schmitz LL, Ravenscraft SA, Marini JJ (1997) Influence of prone position on the extent and distribution of lung injury in a high tidal volume oleic acid model of acute respiratory distress syndrome. Crit Care Med 25(1):16–27CrossRefPubMedGoogle Scholar
  66. 66.
    Marini JC (2013) Mechanical ventilation in the acute respiratory distress syndrome. In: Tobin MJ (ed) Principles and practice of mechanical ventilation. McGraw-Hill, New York, pp 699–726Google Scholar
  67. 67.
    Brower RG, Matthay M, Schoenfeld D (2002) Meta-analysis of acute lung injury and acute respiratory distress syndrome trials. Am J Respir Crit Care Med 166(11):1515–1517CrossRefPubMedGoogle Scholar
  68. 68.
    Eichacker PQ, Gerstenberger EP, Banks SM, Cui X, Natanson C (2002) Meta-analysis of acute lung injury and acute respiratory distress syndrome trials testing low tidal volumes. Am J Respir Crit Care Med 166(11):1510–1514CrossRefPubMedGoogle Scholar
  69. 69.
    Gajic O, Dara SI, Mendez JL, Adesanya AO, Festic E, Caples SM et al (2004) Ventilator associated lung injury in patients without acute lung injury at the onset of mechanical ventilation. Crit Care Med 32:1817–1824CrossRefPubMedGoogle Scholar
  70. 70.
    Herasevich V, Tsapenko M, Kojicic M, Ahmed A, Kashyap R, Venkata C et al (2011) Limiting ventilator-induced lung injury through individual electronic medical record surveillance. Crit Care Med 39(1):34–39CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and ESICM 2015

Authors and Affiliations

  • Didier Dreyfuss
    • 1
    • 2
    • 3
    Email author
  • Jean-Damien Ricard
    • 1
    • 2
    • 3
  • Stéphane Gaudry
    • 1
    • 2
    • 4
  1. 1.Service de Réanimation Médico-Chirurgicale, Hôpital Louis MourierAP-HPColombesFrance
  2. 2.UMR 1137, IAME, INSERMParisFrance
  3. 3.UMR 1137, IAMEUniv Paris Diderot, Sorbonne Paris CitéParisFrance
  4. 4.UMR 1123, ECEVEUniv Paris Diderot, Sorbonne Paris CitéParisFrance

Personalised recommendations