Advertisement

Intensive Care Medicine

, Volume 41, Issue 11, pp 1886–1894 | Cite as

Hemodynamic assessment of ventilated ICU patients with cardiorespiratory failure using a miniaturized multiplane transesophageal echocardiography probe

  • Emmanuelle Begot
  • François Dalmay
  • Caroline Etchecopar
  • Marc Clavel
  • Nicolas Pichon
  • Bruno Francois
  • Roberto Lang
  • Philippe VignonEmail author
Original

Abstract

Purpose

To assess the feasibility, image quality, diagnostic accuracy, therapeutic impact and tolerance of diagnostic and hemodynamic assessment using a novel miniaturized multiplane transesophageal echocardiography (TEE) probe in ventilated ICU patients with cardiopulmonary compromise.

Study design

Prospective, descriptive, single-center study.

Methods

Fifty-seven ventilated patients with acute circulatory or respiratory failure were assessed, using a miniaturized multiplane TEE probe and a standard TEE probe used as reference, randomly by two independent experienced operators. Measurements of hemodynamic parameters were independently performed off-line by a third expert. Diagnostic groups of acute circulatory failure (n = 5) and of acute respiratory failure (n = 3) were distinguished. Hemodynamic monitoring was performed in 9 patients using the miniaturized TEE probe. TEE tolerance and therapeutic impact were reported.

Results

The miniaturized TEE probe was easier to insert than the standard TEE probe. Despite lower imaging quality of the miniaturized TEE probe, the two probes had excellent diagnostic agreement in patients with acute circulatory failure (Kappa: 0.95; 95 % CI: 0.85–1) and with acute respiratory failure (Kappa: 1; 95 % CI: 1.0–1.0). Accordingly, therapeutic strategies derived from both TEE examinations were concordant (Kappa: 0.82; 95 % CI: 0.66–0.97). The concordance between quantitative hemodynamic parameters obtained with both TEE probes was also excellent. No relevant complication secondary to TEE probes insertion occurred.

Conclusions

Hemodynamic assessment of ventilated ICU patients with cardiopulmonary compromise using a miniaturized multiplane TEE probe appears feasible, well-tolerated, and relevant in terms of diagnostic information and potential therapeutic impact. Further larger-scale studies are needed to confirm these preliminary results.

Keywords

Echocardiography Critical care echocardiography Transesophageal echocardiography Hemodynamic monitoring 

Notes

Acknowledgments

PV takes responsibility for the content of the manuscript, including the data and analysis. EB and PV: designed the study; acquired and interpreted the data; drafted and revised the manuscript. CE, MC, NP, BF: acquired the data; revised the manuscript. FD and RL: interpreted the data; revised the manuscript. All authors approved the final version of the manuscript.

Compliance with ethical standards

Conflicts of interest

The miniaturized multiplane probe was lent by Philips Healthcare, which was not involved in data acquisition and analysis and did not take part in the manuscript drafting.

Supplementary material

134_2015_3998_MOESM1_ESM.pdf (200 kb)
Supplementary material 1: Blant-Altman plots depicting estimated bias and 95 % limits of agreement of comparisons of hemodynamic parameters measured with the miniaturized TEE probe and the standard TEE probe used as reference. (PDF 200 kb)
134_2015_3998_MOESM2_ESM.docx (12 kb)
Supplementary material 2 (DOCX 12 kb)

References

  1. 1.
    Mayo PH, Beaulieu Y, Doelken P, Feller-Kopman D, Harrod C, Kaplan A et al (2009) American College of Chest Physicians/La SRLF. Statement on competence in critical care ultrasonography. Chest 135:1050–1060CrossRefPubMedGoogle Scholar
  2. 2.
    Vignon P, Mentec H, Terré S, Gastinne H, Guéret P, Lemaire F (1994) Diagnostic accuracy and therapeutic impact of transthoracic and transesophageal echocardiography in mechanically ventilated patients in the ICU. Chest 106:1829–1834CrossRefPubMedGoogle Scholar
  3. 3.
    Vignon P (2005) Hemodynamic assessment of critically ill patients using echocardiography Doppler. Curr Opin Crit Care 11(3):227–234CrossRefPubMedGoogle Scholar
  4. 4.
    De Baker D, Biston P, Devriendt J, Madl C, Chochrad D, Aldecoa C et al (2010) Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med 362:779–789CrossRefGoogle Scholar
  5. 5.
    Boufferrache K, Amiel JB, Chimot L, Caille V, Charron C, Vignon P et al (2012) Initial ressuscitation guided by the surviving sepsis campaign recommendations and early echocardiography assessment of hemodynamics in intensive care unit septic patients: a pilot study. Crit Care Med 40(10):2821–2827CrossRefGoogle Scholar
  6. 6.
    Expert roundtable on ultrasound in ICU (2011) International expert statement on training standards for critical care echocardiography. Intensive Care Med 37:1077–1083CrossRefGoogle Scholar
  7. 7.
    Expert Round Table on Echocardiography in ICU (2014) International consensus statement on training standards for advanced critical care echocardiography. Intensive Care Med 40:654–666CrossRefGoogle Scholar
  8. 8.
    Vieillard-Baron A, Slama M, Mayo O, Charrou C, Amiel JB, Esterez C et al (2013) A pilot study on safety and clinical utility of a single-use 72-hour indwelling transesophageal echocardiography probe. Intensive Care Med 39:629–635CrossRefPubMedGoogle Scholar
  9. 9.
    Spencer KT, Krauss D, Thurn J, Mor-Avi V, Poppas A, Vignon P et al (1997) Transnasal transesophageal echocardiography. J Am Soc Echocardiogr 10:728–737CrossRefPubMedGoogle Scholar
  10. 10.
    Vignon P, Amiel JB, François B, Clavel M, Pichon N, Dugard A et al (2011) Evaluation of a miniaturized TEE probe in ventilated ICU patients. Preliminary results. Intensive Care Med 37(Suppl. 1):S242Google Scholar
  11. 11.
    Kompanje EJ, Maas AI, Menon DK, Kesecioglu J (2014) Medical research in emergency research in the European Union member states: tensions between theory and practice. Intensive Care Med 40:496–503CrossRefPubMedGoogle Scholar
  12. 12.
    Antonelli M, Levy M, Andrews PJ, Chastre J, Hudson LD, Manthous C et al (2007) Hemodynamic monitoring in shock and implications for management. International Consensus Conference, Paris, France, 27–28 April 2006. Intensive Care Med 33:575–590CrossRefPubMedGoogle Scholar
  13. 13.
    Vignon P, Mayo P (2011) Echocardiography in the critically ill: an overview. In: De Baker D, Cholley B, Slama M, Vieillard-Baron A, Vignon P (eds) Hemodynamic monitoring using echocardiography in the critically ill. Springer, Berlin, pp 1–9CrossRefGoogle Scholar
  14. 14.
    Le Gall JR, Lemeshow S, Saulnier F (1993) A new simplified acute physiology score (SAPS II) based on a European/North American multicenter study. JAMA 270:2957–2963CrossRefPubMedGoogle Scholar
  15. 15.
    Vignon P, Chastagner C, François B, Normand S, Bonnivard M, Gastinne H (2003) Diagnostic ability of hand-held echocardiography in ventilated critically ill patients. Crit Care 7:R84–R91PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Vieillard-Baron A, Chergui K, Rabiller A, Peyrouset O, Page B, Beauchet A et al (2004) Superior vena caval collapsibility as a gauge of volume status in ventilated septic patients. Intensive Care Med 30:1734–1739PubMedGoogle Scholar
  17. 17.
    Jardin F, Dubourg O, Bourdarias JP (1997) Echocardiographic pattern on acute cor pulmonale. Chest 111:209–217CrossRefPubMedGoogle Scholar
  18. 18.
    Ward PR, Lang RM (2011) Pericardial tamponade. In: Lang RM, Goldstein SA, Kronzon I, Khandheria BK (eds) Dynamic echocardiography. Saunders, Saint Louis, pp 250–253CrossRefGoogle Scholar
  19. 19.
    Grümann A, Baretto L, Dugard A, Morera P, Cornu E, Amiel JB et al (2012) Localized cardiac tamponade after open-heart surgery. Ann Thorac Cardiovasc Surg 18:524–529CrossRefPubMedGoogle Scholar
  20. 20.
    Vignon P, Slama M (2011) Diagnosing the mechanisms of circulatory failure. In: De Baker D, Cholley B, Slama M, Vieillard-Baron A, Vignon P (eds) Hemodynamic monitoring using echocardiography in the critically ill. Springer, Berlin, pp 99–107CrossRefGoogle Scholar
  21. 21.
    Ommen SR, Nishimura RA, Appleton CP, Miller FA, Oh JK, Redfield MM et al (2000) Clinical utility of doppler echocardiography and tissue doppler imaging in the estimation of left ventricular filling pressures. Circulation 102:1788–1794CrossRefPubMedGoogle Scholar
  22. 22.
    Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA et al (2009) Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Eur J Echocardiogr 10:165–193CrossRefPubMedGoogle Scholar
  23. 23.
    Vignon P, Ait Hassain A, François B, Preux PM, Pichon N, Clavel M et al (2008) Non invasive assessment of pulmonary artery occlusion pressure in ventilated patients: a transesophageal study. Crit Care 12:R18PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    The ARDS Definition Task Force (2012) Acute respiratory distress syndrom: the Berlin definition. JAMA 307:2526–2533Google Scholar
  25. 25.
    Lhéritier G, Legras A, Caille A, Lherm T, Mathonnet A, Frat JP et al (2013) Prevalence and prognostic value of acute cor pulmonale and patent foramen ovale in ventilated patients with early acute respiratory distress syndrome. A multicenter study. Intensive Care Med 39:1734–1742CrossRefPubMedGoogle Scholar
  26. 26.
    Sohn J, Hollenberg SM (2011) Cardiogenic Shock Associated with Acute Left-Heart Failure. In: De Baker D, Cholley B, Slama M, Vieillard-Baron A, Vignon P (eds) Hemodynamic monitoring using echocardiography in the critically ill. Springer, Berlin, pp 117–131CrossRefGoogle Scholar
  27. 27.
    Huttemann E, Schelenz C, Kara F, Chatzinikolaou K, Reinhart K (2004) The use of transesophageal echocardiography in the general ICU – a minireview. Acta Anaesthesiol Scand 48:827–836CrossRefPubMedGoogle Scholar
  28. 28.
    Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellika PA et al (2015) Recommendations for chamber quantification. J Am Soc Echocardiogr 28:1–39CrossRefPubMedGoogle Scholar
  29. 29.
    Ryan T, Petrovic O, Dillon JC, Feigenbaum H, Conley MJ, Armstrong WF (1985) An echocardiographic index for separation of right ventricular volume and pressure overload. J Am Coll Cardiol 5:918–927CrossRefPubMedGoogle Scholar
  30. 30.
    Kuecherer HF, Muhiudeen IA, Kusumoto FM, Lee E, Moulinier LE, Cahalan MK et al (1990) Estimation of mean left atrial pressure from transesophageal pulsed Doppler echocardiography of pulmonary venous flow. Circulation 82:1127–1139CrossRefPubMedGoogle Scholar
  31. 31.
    Zoghbi WA, Quinones MA (1986) Determination of cardiac output by Doppler echocardiography: a critical appraisal. Herz 11:258–268PubMedGoogle Scholar
  32. 32.
    Vignon P, Allot V, Lesage J, Martaillé JF, Aldigier JC, François B et al (2007) Diagnosis of left ventricular diastolic dysfunction in the setting of acute changes in loading conditions. Crit Care 11:R43PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Bloch DA, Kraemer HC (1989) 2 x 2 kappa coefficients: measures of agreement or association. Biometrics 45:269–287CrossRefPubMedGoogle Scholar
  34. 34.
    Fermanian J (1984) Measurement of agreement between 2 judges. Qualitative cases. Rev Epidemiol Sante Publ 32:140–147Google Scholar
  35. 35.
    Blant JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310Google Scholar
  36. 36.
    Urbanowicz JH, Kernoff RS, Oppenheim G, Parnagian E, Billingham ME, Popp RL (1990) Transesophageal echocardiography and its potential for esophageal damage. Anesthesiology 72:40–43CrossRefPubMedGoogle Scholar
  37. 37.
    Ferns S, Komarlu R, Van Bergen A, Multani K, Wei Cui V, Robertson DA (2012) Transesophageal echocardiography in critically ill acute postoperative infants: comparison of AcuNav intracardiac echocardiographic and microTEE miniaturized transducers. J Am Soc Echocardiogr 25:874–881CrossRefPubMedGoogle Scholar
  38. 38.
    Scohy TV, Gommers D, Jan Derk, ten Harkel A, Deryck Y, McGhie J, Bogers AdJJC (2007) Intraoperative evaluation of micromultiplane transesophageal echocardiographic probe in surgery for congenital heart disease. Eur J Cardiol 8:241–246Google Scholar
  39. 39.
    Pushparajah K, Miller OI, Rawlins D, Barlow A, Nugent K, Simpson JM (2012) Clinical application of a micro multiplane transesophageal probe in congenital cardiac disease. Cardiol Young 22:170–177CrossRefPubMedGoogle Scholar
  40. 40.
    Zyblewski SC, Shirali GS, Forbus GA, Hsia TY, Bradley SM, Atz AM et al (2010) Initial experience with a miniaturized multiplane transesophageal probe in small infants undergoing cardiac operations. Ann Thorac Surg 89:1990–1994PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Vieillard-Baron A, Charron C, Chergui K, Peyrouset O, Jardin F (2006) Bedside echocardiographic evaluation of hemodynamics in sepsis: is a qualitative evaluation sufficient? Intensive Care Med 32:1547–1552CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and ESICM 2015

Authors and Affiliations

  • Emmanuelle Begot
    • 1
    • 2
    • 3
  • François Dalmay
    • 4
  • Caroline Etchecopar
    • 3
  • Marc Clavel
    • 1
    • 3
  • Nicolas Pichon
    • 1
    • 3
  • Bruno Francois
    • 1
    • 3
  • Roberto Lang
    • 5
  • Philippe Vignon
    • 1
    • 2
    • 3
    Email author
  1. 1.Medical-Surgical ICU, Réanimation Polyvalente, CHU DupuytrenDupuytren University HospitalLimogesFrance
  2. 2.Faculty of MedicineUniversity of LimogesLimogesFrance
  3. 3.Inserm CIC1435LimogesFrance
  4. 4.Department of BiostatisticsINSERM UMR1094LimogesFrance
  5. 5.Department of Medicine, Section of CardiologyUniversity of ChicagoChicagoUSA

Personalised recommendations