Advertisement

Intensive Care Medicine

, Volume 41, Issue 10, pp 1773–1780 | Cite as

A novel pump-driven veno-venous gas exchange system during extracorporeal CO2-removal

  • Alexander Hermann
  • Katharina Riss
  • Peter Schellongowski
  • Andja Bojic
  • Philipp Wohlfarth
  • Oliver Robak
  • Wolfgang R. Sperr
  • Thomas StaudingerEmail author
Original

Abstract

Purpose

Pump-driven veno-venous extracorporeal CO2-removal (ECCO2-R) increasingly takes root in hypercapnic lung failure to minimize ventilation invasiveness or to avoid intubation. A recently developed device (iLA activve®, Novalung, Germany) allows effective decarboxylation via a 22 French double lumen cannula. To assess determinants of gas exchange, we prospectively evaluated the performance of ECCO2-R in ten patients receiving iLA activve® due to hypercapnic respiratory failure.

Methods

Sweep gas flow was increased in steps from 1 to 14 L/min at constant blood flow (phase 1). Similarly, blood flow was gradually increased at constant sweep gas flow (phase 2). At each step gas transfer via the membrane as well as arterial blood gas samples were analyzed.

Results

During phase 1, we observed a significant increase in CO2 transfer together with a decrease in PaCO2 levels from a median of 66 mmHg (range 46–85) to 49 (31–65) mmHg from 1 to 14 L/min sweep gas flow (p < 0.0001), while arterial oxygenation deteriorated with high sweep gas flow rates. During phase 2, oxygen transfer significantly increased leading to an increase in PaO2 from 67 (49–87) at 0.5 L/min to 117 (66–305) mmHg at 2.0 L/min (p < 0.0001). Higher blood flows also significantly enhanced decarboxylation (p < 0.0001).

Conclusions

Increasing sweep gas flow results in effective CO2-removal, which can be further reinforced by raising blood flow. The clinically relevant oxygenation effect in this setting could broaden the range of indications of the system and help to set up an individually tailored configuration.

Keywords

ECCO2-R iLA activve® Hypercapnia Decarboxylation Extracorporeal circulation 

Notes

Compliance with Ethical Standards

Conflicts of interest

Two of the authors (Thomas Staudinger, Peter Schellongowski) received speaker fees from Novalung.

Supplementary material

134_2015_3957_MOESM1_ESM.jpg (428 kb)
Supplementary material 1: Panel a: Crude CO2 transfer during stepwise increase of sweep gas flow (study phase 1), panel b: Crude CO2 transfer during stepwise increase of blood flow (study phase 2). Asterisks denote statistically significant changes compared to baseline (p < 0.0001). (JPEG 428 kb)

References

  1. 1.
    Jayroe JB, Wang D, Deyo DJ, Alpard SK, Bidani A, Zwischenberger JB (2003) The effect of augmented hemodynamics on blood flow during arteriovenous carbon dioxide removal. ASAIO J 49:30–34CrossRefPubMedGoogle Scholar
  2. 2.
    Schmidt M, Tachon G, Devilliers C, Muller G, Hekimian G, Brechot N, Merceron S, Luyt CE, Trouillet JL, Chastre J, Leprince P, Combes A (2013) Blood oxygenation and decarboxylation determinants during venovenous ECMO for respiratory failure in adults. Intensiv Care Med 39:838–846CrossRefGoogle Scholar
  3. 3.
    Zimmermann M, Bein T, Arlt M, Philipp A, Rupprecht L, Mueller T, Lubnow M, Graf BM, Schlitt HJ (2009) Pumpless extracorporeal interventional lung assist in patients with acute respiratory distress syndrome: a prospective pilot study. Crit Care 13:R10PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Bein T, Weber-Carstens S, Goldmann A, Muller T, Staudinger T, Brederlau J, Muellenbach R, Dembinski R, Graf BM, Wewalka M, Philipp A, Wernecke KD, Lubnow M, Slutsky AS (2013) Lower tidal volume strategy (approximately 3 ml/kg) combined with extracorporeal CO2 removal versus ‘conventional’ protective ventilation (6 ml/kg) in severe ARDS : the prospective randomized Xtravent-study. Intensiv Care Med 39:847–856CrossRefGoogle Scholar
  5. 5.
    Fischer S, Simon AR, Welte T, Hoeper MM, Meyer A, Tessmann R, Gohrbandt B, Gottlieb J, Haverich A, Strueber M (2006) Bridge to lung transplantation with the novel pumpless interventional lung assist device NovaLung. J Thorac Cardiovasc Surg 131:719–723CrossRefPubMedGoogle Scholar
  6. 6.
    Fischer S, Hoeper MM, Bein T, Simon AR, Gottlieb J, Wisser W, Frey L, Van Raemdonck D, Welte T, Haverich A, Strueber M (2008) Interventional lung assist: a new concept of protective ventilation in bridge to lung transplantation. ASAIO J 54:3–10CrossRefPubMedGoogle Scholar
  7. 7.
    Kluge S, Braune SA, Engel M, Nierhaus A, Frings D, Ebelt H, Uhrig A, Metschke M, Wegscheider K, Suttorp N, Rousseau S (2012) Avoiding invasive mechanical ventilation by extracorporeal carbon dioxide removal in patients failing noninvasive ventilation. Intensiv Care Med 38:1632–1639CrossRefGoogle Scholar
  8. 8.
    Abrams DC, Brenner K, Burkart KM, Agerstrand CL, Thomashow BM, Bacchetta M, Brodie D (2013) Pilot study of extracorporeal carbon dioxide removal to facilitate extubation and ambulation in exacerbations of chronic obstructive pulmonary disease. Ann Am Thorac Soc 10:307–314CrossRefPubMedGoogle Scholar
  9. 9.
    Terragni P, Maiolo G, Ranieri VM (2012) Role and potentials of low-flow CO(2) removal system in mechanical ventilation. Curr Opin Crit Care 18:93–98CrossRefPubMedGoogle Scholar
  10. 10.
    Hermann A, Staudinger T, Bojic A, Riss K, Wohlfarth P, Robak O, Sperr WR, Schellongowski P (2014) First experience with a new miniaturized pump-driven venovenous extracorporeal CO2 removal system (iLA Activve): a retrospective data analysis. ASAIO J 60:342–347CrossRefPubMedGoogle Scholar
  11. 11.
    Lehle K, Philipp A, Hiller KA, Zeman F, Buchwald D, Schmid C, Dornia C, Lunz D, Muller T, Lubnow M (2014) Efficiency of gas transfer in venovenous extracorporeal membrane oxygenation: analysis of 317 cases with four different ECMO systems. Intensiv Care Med 40:1870–1877CrossRefGoogle Scholar
  12. 12.
    Wearden PD, Federspiel WJ, Morley SW, Rosenberg M, Bieniek PD, Lund LW, Ochs BD (2012) Respiratory dialysis with an active-mixing extracorporeal carbon dioxide removal system in a chronic sheep study. Intensiv Care Med 38:1705–1711CrossRefGoogle Scholar
  13. 13.
    Zhou X, Loran DB, Wang D, Hyde BR, Lick SD, Zwischenberger JB (2005) Seventy-two hour gas exchange performance and hemodynamic properties of NOVALUNG iLA as a gas exchanger for arteriovenous carbon dioxide removal. Perfusion 20:303–308CrossRefPubMedGoogle Scholar
  14. 14.
    Muller T, Lubnow M, Philipp A, Bein T, Jeron A, Luchner A, Rupprecht L, Reng M, Langgartner J, Wrede CE, Zimmermann M, Birnbaum D, Schmid C, Riegger GA, Pfeifer M (2009) Extracorporeal pumpless interventional lung assist in clinical practice: determinants of efficacy. Eur Respir J 33:551–558CrossRefPubMedGoogle Scholar
  15. 15.
    Schellongowski P, Riss K, Staudinger T, Ullrich R, Krenn CG, Sitzwohl C, Bojic A, Wohlfarth P, Sperr WR, Rabitsch W, Aigner C, Taghavi S, Jaksch P, Klepetko W, Lang G (2014) Extracorporeal CO removal as bridge to lung transplantation in life-threatening hypercapnia. Transpl Int (Epub ahead of print) Google Scholar
  16. 16.
    Mulholland JW, Massey W, Shelton JC (2000) Investigation and quantification of the blood trauma caused by the combined dynamic forces experienced during cardiopulmonary bypass. Perfusion 15:485–494CrossRefPubMedGoogle Scholar
  17. 17.
    Slagt C, Helmi M, Malagon I, Groeneveld AB (2015) Calibrated versus uncalibrated arterial pressure waveform analysis in monitoring cardiac output with transpulmonary thermodilution in patients with severe sepsis and septic shock: an observational study. Eur J Anaesthesiol 32:5–12CrossRefPubMedGoogle Scholar
  18. 18.
    Monnet X, Vaquer S, Anguel N, Jozwiak M, Cipriani F, Richard C, Teboul JL (2015) Comparison of pulse contour analysis by Pulsioflex and Vigileo to measure and track changes of cardiac output in critically ill patients. Br J Anaesth 114:235–243CrossRefPubMedGoogle Scholar
  19. 19.
    Radermacher P, Santak B, Becker H, Falke KJ (1989) Prostaglandin E1 and nitroglycerin reduce pulmonary capillary pressure but worsen ventilation-perfusion distributions in patients with adult respiratory distress syndrome. Anesthesiology 70:601–606CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and ESICM 2015

Authors and Affiliations

  • Alexander Hermann
    • 1
  • Katharina Riss
    • 1
  • Peter Schellongowski
    • 1
  • Andja Bojic
    • 1
  • Philipp Wohlfarth
    • 1
  • Oliver Robak
    • 1
  • Wolfgang R. Sperr
    • 1
  • Thomas Staudinger
    • 1
    Email author
  1. 1.Department of Medicine I, Intensive Care Unit 13i2, General Hospital ViennaMedical University of ViennaViennaAustria

Personalised recommendations