Advertisement

Intensive Care Medicine

, Volume 41, Issue 7, pp 1281–1290 | Cite as

Plasma suPAR as a prognostic biological marker for ICU mortality in ARDS patients

  • Diederik G. P. J. Geboers
  • Friso M. de Beer
  • Anita M. Tuip-de Boer
  • Tom van der Poll
  • Janneke Horn
  • Olaf L. Cremer
  • Marc J. M. Bonten
  • David S. Y. Ong
  • Marcus J. Schultz
  • Lieuwe D. J. Bos
Original

Abstract

Purpose

We investigated the prognostic value of plasma soluble urokinase plasminogen activator receptor (suPAR) on day 1 in patients with the acute respiratory distress syndrome (ARDS) for intensive care unit (ICU) mortality and compared it with established disease severity scores on day 1.

Methods

suPAR was determined batchwise in plasma obtained within 24 h after admission.

Results

632 ARDS patients were included. Significantly (P = 0.02) higher median levels of suPAR were found with increasing severity of ARDS: 5.9 ng/ml [IQR 3.1–12.8] in mild ARDS (n = 82), 8.4 ng/ml [IQR 4.1–15.0] in moderate ARDS (n = 333), and 9.0 ng/ml [IQR 4.5–16.0] in severe ARDS (n = 217). Non-survivors had higher median levels of suPAR [12.5 ng/ml (IQR 5.1–19.5) vs. 7.4 ng/ml (3.9–13.6), P < 0.001]. The area under the receiver operator characteristic curve (ROC-AUC) for mortality of suPAR (0.62) was lower than the ROC-AUC of the APACHE IV score (0.72, P = 0.007), higher than that of the ARDS definition classification (0.53, P = 0.005), and did not differ from that of the SOFA score (0.68, P = 0.07) and the oxygenation index (OI) (0.58, P = 0.29). Plasma suPAR did not improve the discrimination of the established disease severity scores, but did improve net reclassification of the APACHE score (29 %), SOFA score (23 %), OI (38 %), and Berlin definition classification (39 %).

Conclusion

As a single biological marker, the prognostic value for death of plasma suPAR in ARDS patients is low. Plasma suPAR, however, improves the net reclassification, suggesting a potential role for suPAR in ICU mortality prediction models.

Keywords

ARDS ICU mortality suPAR Biological marker 

Notes

Acknowledgments

ViroGates A/S, Denmark, donated the ELISA kits for measuring suPAR free of charge. The company had no influence on study design, results, and the decision to publish results. Supported by the Center for Translational Molecular Medicine (http://www.ctmm.nl), project MARS (grant 04I-201).

Conflicts of interest

MJS serves as an advisor of Virogates A/S, Denmark. He has no financial interests in the company. The authors declare that they have no competing interests.

Supplementary material

134_2015_3924_MOESM1_ESM.pdf (102 kb)
Supplementary material 1 (PDF 101 kb)

References

  1. 1.
    Esteban A, Frutos-Vivar F, Muriel A, Ferguson ND, Peñuelas O, Abraira V et al (2013) Evolution of mortality over time in patients receiving mechanical ventilation. Am J Respir Crit Care Med 188(2):220PubMedCrossRefGoogle Scholar
  2. 2.
    Erickson SE, Martin GS, Davis JL, Matthay MA, Eisner MD, NIH NHLBI ARDS Network (2009) Recent trends in acute lung injury mortality: 1996–2005. Crit Care Med 37(5):1574PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Barnett N, Ware LB (2011) Biomarkers in acute lung injury—marking forward progress. Crit Care Clin 27(3):661–683PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Sapru A, Calfdee CS, Liu KD, Kangelaris K, Hansen H, Pawlikowska L, Ware LB, Alkhouli MF, Abbot J, Matthay MA, The NHLBI ARDS Network (2015) Plasma soluble thrombomodulin levels are associated with mortality in the acute respiratory distress syndrome. Intensive Care Med 41:470–478PubMedCrossRefGoogle Scholar
  5. 5.
    Thunø M, Machoa B, Eugen-Olsen J (2009) suPAR: the molecular crystal ball. Dis Markers 27:157–172PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Koch A, Voigt S, Kruschinski C, Sanson E, Dückers H, Horn A, Yagmur E, Zimmermann H, Trautwein C, Tacke F (2011) Circulating soluble urokinase plasminogen activator receptor is stably elevated during the first week of treatment in the intensive care unit and predicts mortality in critically ill patients. Crit Care 15:R63PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Jalkanen V, Yang R, Linko R, Huhtala H, Okkonen M, Varpula T, Pettila V, Tenhunen J, The FINNALI Study Group (2013) SuPAR and PAI-1 in critically ill, mechanically ventilated patients. Intensive Care Med 39:489–496PubMedCrossRefGoogle Scholar
  8. 8.
    Suberviola B, Castellanos-Ortega A, Ruiz AR, Lopez-Hoyos M, Santibanez M (2013) Hospital mortality prognostication in sepsis using the new biomarkers suPAR and proADM in a single determination on ICU admission. Intensive Care Med 39:1945–1952PubMedCrossRefGoogle Scholar
  9. 9.
    Pencina MJ, D’Agostino RB Sr, D’Agostino RB Jr, Vasan RS (2008) Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Statist Med 27:157–172CrossRefGoogle Scholar
  10. 10.
    Klein Klouwenberg PM, Ong DS, Bos LD, de Beer FM, van Hooijdonk RT, Huson MA, Straat M, van Vught LA, Wieske L, Horn J, Schultz MJ, van der Poll T, Bonten MJM, Cremer OL (2013) Interobserver agreement of Centers for Disease Control and Prevention criteria for classifying infections in critically ill patients. Crit Care Med 41(10):2373–2378PubMedCrossRefGoogle Scholar
  11. 11.
    Slutsky S, Ranieri VM (2013) Ventilator-induced lung injury. N Engl J Med 369:2126–2136PubMedCrossRefGoogle Scholar
  12. 12.
    The National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network (2006) Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 354:2564–2575Google Scholar
  13. 13.
    Dellinger R, Levy M, Carlet J, Bion J, Parker M, Jaeschke R, Reinhart K, Angus D, Brun-Buisson C, Beale R, Calandra T, Dhainaut J, Gerlach H, Harvey M, Marini J, Marshall J, Ranieri M, Ramsay G, Sevransky J, Thompson B, Townsend S, Vender J, Zimmerman J, Vincent J (2008) Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med 36(1):296–327PubMedCrossRefGoogle Scholar
  14. 14.
    Bernard G, Artigas A, Brigham K, Carlet J, Falke K, Hudson L, Lamy M, LeGall J, Morris A, Spragg R (1994) Report of the American-European consensus conference on acute respiratory distress syndrome: definitions, mechanisms, relevant outcomes, and clinical trial coordination. Consensus Committee. J Crit Care 9(1):72–81PubMedCrossRefGoogle Scholar
  15. 15.
    ARDS Definition Task Force et al (2012) Acute respiratory distress syndrome: the Berlin definition. JAMA 307(23):2526–2533Google Scholar
  16. 16.
    Ferguson N, Fan E, Camporota L, Antonelli M, Anzueto A, Beale R, Brochard L, Brower R, Esteban A, Gattinoni L, Rhodes A, Slutsky A, Vincent J, Rubenfeld G, Thompson B, Ranieri V (2012) The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. Intensive Care Med 38(10):1573–1582PubMedCrossRefGoogle Scholar
  17. 17.
    Zimmerman JE, Kramer AA, McNair DS, Malila FM (2006) Acute Physiology and Chronic Health Evaluation (APACHE) IV: hospital mortality assessment for today’s critically ill patients. Crit Care Med 34(5):1297PubMedCrossRefGoogle Scholar
  18. 18.
    Vincent JL, de Mendonça A, Cantraine F, Moreno R, Takala J, Suter PM, Sprung CL, Colardyn F, Blecher S (1998) Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study. Working group on “sepsis-related problems” of the European Society of Intensive Care Medicine. Crit Care Med 26(11):1793–1800PubMedCrossRefGoogle Scholar
  19. 19.
    Trachsel D, McCrindle BW, Nakagawa S, Bohn D (2005) Oxygenation index predicts outcome in children with acute hypoxemic respiratory failure. Am J Respir Crit Care Med 172:206–211PubMedCrossRefGoogle Scholar
  20. 20.
    Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Müller M (2011) pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 12:77PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org
  22. 22.
    Plewes K, Royakkers AA, Hanson J, Hasan MM, Alam S, Ghose A, Maude RJ, Stassen PM, Charunwatthana P, Lee SJ, Turner GD, Dondorp AM, Schultz MJ (2014) Correlation of biomarkers for parasite burden and immune activation with acute kidney injury in severe falciparum malaria. Malaria J 13:91CrossRefGoogle Scholar
  23. 23.
    Backes Y, van der Sluijs KF, Tuip de Boer AM, Hofstra JJ, Vlaar AP, Determann RM, Knape P, Mackie DP, Schultz MJ (2011) Soluble urokinase-type plasminogen activator receptor levels in patients with burn injuries and inhalation trauma requiring mechanical ventilation: an observational cohort study. Crit Care 15(6):R270PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Vincent JL, Opal SM, Marshall JC (2010) Ten reasons why we should NOT use severity scores as entry criteria for clinical trials or in our treatment decisions. Crit Care Med 38(1):283–287PubMedCrossRefGoogle Scholar
  25. 25.
    Quach S, Hennessy DA, Faris P, Fong A, Quan H, Doig C (2009) A comparison between the APACHE II and Charlson Index Score for predicting hospital mortality in critically ill patients. BMC Health Serv Res 30(9):129CrossRefGoogle Scholar
  26. 26.
    Ware LB, Koyama T, Billheimer DD, Wu W, Bernard GR, Thompson BT, Brower RG, Standiford TJ, Martin TR, Matthay MA, NHLBI ARDS Clinical Trials Network (2010) Prognostic and pathogenetic value of combining clinical and biochemical indices in patients with acute lung injury. Chest 137(2):288–296PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Cook NR (2007) Use and misuse of the receiver operating characteristic curve in risk prediction. Circulation 115(7):928–935PubMedCrossRefGoogle Scholar
  28. 28.
    Pepe MS, Janes H, Longton G, Leisenring W, Newcomb P (2004) Limitations of the odds ratio in gauging the performance of a diagnostic, prognostic, or screening marker. Am J Epidemiol 159:882–890PubMedCrossRefGoogle Scholar
  29. 29.
    Calfee CS, Ware LB, Glidden DV, Eisner MD, Parsons PE, Thompson TB, Matthay MA, National Heart, Blood, and Lung Institute Acute Respiratory Distress Syndrome Network (2011) Use of risk reclassification with multiple biomarkers improves mortality prediction in acute lung injury. Crit Care Med 39:711–717PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and ESICM 2015

Authors and Affiliations

  • Diederik G. P. J. Geboers
    • 1
  • Friso M. de Beer
    • 1
  • Anita M. Tuip-de Boer
    • 3
  • Tom van der Poll
    • 4
  • Janneke Horn
    • 1
  • Olaf L. Cremer
    • 5
  • Marc J. M. Bonten
    • 6
    • 7
  • David S. Y. Ong
    • 5
    • 6
    • 7
  • Marcus J. Schultz
    • 1
  • Lieuwe D. J. Bos
    • 1
    • 2
  1. 1.Department of Intensive CareAcademic Medical CenterAmsterdamThe Netherlands
  2. 2.Department of Respiratory MedicineAcademic Medical CenterAmsterdamThe Netherlands
  3. 3.Laboratory of Experimental Intensive Care and Anesthesiology (LEICA)Academic Medical CenterAmsterdamThe Netherlands
  4. 4.Center of Experimental and Molecular Medicine (CEMM)Academic Medical CenterAmsterdamThe Netherlands
  5. 5.Department of Intensive Care MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
  6. 6.Department of Medical MicrobiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
  7. 7.Julius Center for Health Sciences and Primary CareUniversity Medical Center UtrechtUtrechtThe Netherlands

Personalised recommendations