Advertisement

Intensive Care Medicine

, Volume 41, Issue 7, pp 1181–1196 | Cite as

Strategies to reduce curative antibiotic therapy in intensive care units (adult and paediatric)

  • Cédric BretonnièreEmail author
  • Marc Leone
  • Christophe Milési
  • Bernard Allaouchiche
  • Laurence Armand-Lefevre
  • Olivier Baldesi
  • Lila Bouadma
  • Dominique Decré
  • Samy Figueiredo
  • Rémy Gauzit
  • Benoît Guery
  • Nicolas Joram
  • Boris Jung
  • Sigismond Lasocki
  • Alain Lepape
  • Fabrice Lesage
  • Olivier Pajot
  • François Philippart
  • Bertrand Souweine
  • Pierre Tattevin
  • Jean-François Timsit
  • Renaud Vialet
  • Jean Ralph Zahar
  • Benoît Misset
  • Jean-Pierre Bedos
Conference Reports and Expert Panel

Abstract

Emerging resistance to antibiotics shows no signs of decline. At the same time, few new antibacterials are being discovered. There is a worldwide recognition regarding the danger of this situation. The urgency of the situation and the conviction that practices should change led the Société de Réanimation de Langue Française (SRLF) and the Société Française d’Anesthésie et de Réanimation (SFAR) to set up a panel of experts from various disciplines. These experts met for the first time at the end of 2012 and have since met regularly to issue the following 67 recommendations, according to the rigorous GRADE methodology. Five fields were explored: i) the link between the resistance of bacteria and the use of antibiotics in intensive care; ii) which microbiological data and how to use them to reduce antibiotic consumption; iii) how should antibiotic therapy be chosen to limit consumption of antibiotics; iv) how can antibiotic administration be optimized; v) review and duration of antibiotic treatments. In each institution, the appropriation of these recommendations should arouse multidisciplinary discussions resulting in better knowledge of local epidemiology, rate of antibiotic use, and finally protocols for improving the stewardship of antibiotics. These efforts should contribute to limit the emergence of resistant bacteria.

Keywords

Antimicrobial stewardship Epidemiology Microbiological diagnostic techniques Pharmacokinetics/pharmacodynamics Therapeutic drug monitoring 

Notes

Conflicts of interest

The process for reporting conflicts of interest (COI) of the organizing committee members and of the experts is described in the “Methodology” section. Finally, during the manuscript writing final process, authors were again asked to declare whether they have or not any COI to disclose. Experts and organizing committee members indicate that they have no COI in particular that they have no financial relationship with the organization that sponsored the research.

Supplementary material

134_2015_3853_MOESM1_ESM.pdf (553 kb)
Supplementary material 1 (PDF 553 kb)

References

  1. 1.
    So A, Furlong M, Heddini A (2010) Globalisation and antibiotic resistance. BMJ 341:c5116PubMedCrossRefGoogle Scholar
  2. 2.
    Bassetti M, Merelli M, Temperoni C, Astilean A (2013) New antibiotics for bad bugs: where are we? Ann Clin Microbiol Antimicrob 12:22PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, Scheld M, Spellberg B, Bartlett J (2009) Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 48:1–12PubMedCrossRefGoogle Scholar
  4. 4.
    Corona A, Colombo R (2013) Towards the end of the antibiotic era: let’s save the ancient soldier Colistin! Intensive Care Med 39:1660–1661PubMedCrossRefGoogle Scholar
  5. 5.
    WHO (2014) Antimicrobial resistance: global report on surveillance. World Health Organization, Geneva, p 256Google Scholar
  6. 6.
    Carlet J (2012) World Alliance Against Antibiotic Resistance (WAAR): safeguarding antibiotics. Intensive Care Med 38:1723–1724PubMedCrossRefGoogle Scholar
  7. 7.
    Paiva JA (2013) Adding risk factors for potentially resistant pathogens, increasing antibiotic pressure and risk creating the untreatable bacteria: time to change direction. Intensive Care Med 39:779–781PubMedCrossRefGoogle Scholar
  8. 8.
    Damas P, Canivet JL, Ledoux D, Monchi M, Melin P, Nys M, De Mol P (2006) Selection of resistance during sequential use of preferential antibiotic classes. Intensive Care Med 32:67–74PubMedCrossRefGoogle Scholar
  9. 9.
    Timsit JF, Harbarth S, Carlet J (2014) De-escalation as a potential way of reducing antibiotic use and antimicrobial resistance in ICU. Intensive Care Med 40:1580–1582PubMedCrossRefGoogle Scholar
  10. 10.
    Visscher S, Schurink CA, Melsen WG, Lucas PJ, Bonten MJ (2008) Effects of systemic antibiotic therapy on bacterial persistence in the respiratory tract of mechanically ventilated patients. Intensive Care Med 34:692–699PubMedCrossRefGoogle Scholar
  11. 11.
    Brusselaers N, Vogelaers D, Blot S (2011) The rising problem of antimicrobial resistance in the intensive care unit. Ann Intensive Care 1:47PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Michalopoulos AS, Falagas ME (2011) Colistin: recent data on pharmacodynamics properties and clinical efficacy in critically ill patients. Ann Intensive Care 1:30PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Hanberger H, Arman D, Gill H, Jindrak V, Kalenic S, Kurcz A, Licker M, Naaber P, Scicluna EA, Vanis V, Walther SM (2009) Surveillance of microbial resistance in European intensive care units: a first report from the Care-ICU programme for improved infection control. Intensive Care Med 35:91–100PubMedCrossRefGoogle Scholar
  14. 14.
    Bassetti M, De Waele JJ, Eggimann P, Garnacho-Montero J, Kahlmeter G, Menichetti F, Nicolau DP, Paiva JA, Tumbarello M, Welte T, Wilcox M, Zahar JR, Poulakou G (2015) Preventive and therapeutic strategies in critically ill patients with highly resistant bacteria. Intensive Care Med 41:776–795Google Scholar
  15. 15.
    Atkins D, Best D, Briss PA, Eccles M, Falck-Ytter Y, Flottorp S, Guyatt GH, Harbour RT, Haugh MC, Henry D, Hill S, Jaeschke R, Leng G, Liberati A, Magrini N, Mason J, Middleton P, Mrukowicz J, O’Connell D, Oxman AD, Phillips B, Schunemann HJ, Edejer T, Varonen H, Vist GE, Williams JW Jr, Zaza S (2004) Grading quality of evidence and strength of recommendations. BMJ 328:1490PubMedCrossRefGoogle Scholar
  16. 16.
    Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, Schunemann HJ (2008) Grade: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ Clin Res 336:924–926CrossRefGoogle Scholar
  17. 17.
    GRADE Working Group (2004) Grading quality of evidence and strength of recommendations. BMJ 328:1490PubMedCentralCrossRefGoogle Scholar
  18. 18.
    Fitch K, Bernstein S, Aguilar M, Burnand B et al (2001) The RAND/UCLA appropriateness method user’s manual. RAND, Santa MonicaGoogle Scholar
  19. 19.
    DiazGranados CA (2012) Prospective audit for antimicrobial stewardship in intensive care: impact on resistance and clinical outcomes. Am J Infect Control 40:526–529PubMedCrossRefGoogle Scholar
  20. 20.
    Kim JW, Chung J, Choi SH, Jang HJ, Hong SB, Lim CM, Koh Y (2012) Early use of imipenem/cilastatin and vancomycin followed by de-escalation versus conventional antimicrobials without de-escalation for patients with hospital-acquired pneumonia in a medical ICU: a randomized clinical trial. Critical Care 16:R28PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Nijssen S, Fluit A, van de Vijver D, Top J, Willems R, Bonten MJ (2010) Effects of reducing beta-lactam antibiotic pressure on intestinal colonization of antibiotic-resistant gram-negative bacteria. Intensive Care Med 36:512–519PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Kaki R, Elligsen M, Walker S, Simor A, Palmay L, Daneman N (2011) Impact of antimicrobial stewardship in critical care: a systematic review. J Antimicrob Chemother 66:1223–1230PubMedCrossRefGoogle Scholar
  23. 23.
    Kuster SP, Ruef C, Ledergerber B, Hintermann A, Deplazes C, Neuber L, Weber R (2008) Quantitative antibiotic use in hospitals: comparison of measurements, literature review, and recommendations for a standard of reporting. Infection 36:549–559PubMedCrossRefGoogle Scholar
  24. 24.
    Giantsou E, Liratzopoulos N, Efraimidou E, Panopoulou M, Alepopoulou E, Kartali-Ktenidou S, Manolas K (2007) De-escalation therapy rates are significantly higher by bronchoalveolar lavage than by tracheal aspirate. Intensive Care Med 33:1533–1540PubMedCrossRefGoogle Scholar
  25. 25.
    Garnacho-Montero J, Gutierrez-Pizarraya A, Escoresca-Ortega A, Corcia-Palomo Y, Fernandez-Delgado E, Herrera-Melero I, Ortiz-Leyba C, Marquez-Vacaro JA (2014) De-escalation of empirical therapy is associated with lower mortality in patients with severe sepsis and septic shock. Intensive Care Med 40:32–40PubMedCrossRefGoogle Scholar
  26. 26.
    Mokart D, Slehofer G, Lambert J, Sannini A, Chow-Chine L, Brun JP, Berger P, Duran S, Faucher M, Blache JL, Saillard C, Vey N, Leone M (2014) De-escalation of antimicrobial treatment in neutropenic patients with severe sepsis: results from an observational study. Intensive Care Med 40:41–49PubMedCrossRefGoogle Scholar
  27. 27.
    Fagon JY, Chastre J, Wolff M, Gervais C, Parer-Aubas S, Stephan F, Similowski T, Mercat A, Diehl JL, Sollet JP, Tenaillon A (2000) Invasive and noninvasive strategies for management of suspected ventilator-associated pneumonia. A randomized trial. Ann Intern Med 132:621–630PubMedCrossRefGoogle Scholar
  28. 28.
    Swanson JM, Wood GC, Croce MA, Mueller EW, Boucher BA, Fabian TC (2008) Utility of preliminary bronchoalveolar lavage results in suspected ventilator-associated pneumonia. J Trauma 65:1271–1277PubMedCrossRefGoogle Scholar
  29. 29.
    Canadian Critical Care Trials Group (2006) A randomized trial of diagnostic techniques for ventilator-associated pneumonia. N Engl J Med 355:2619–2630CrossRefGoogle Scholar
  30. 30.
    O’Horo JC, Thompson D, Safdar N (2012) Is the gram stain useful in the microbiologic diagnosis of VAP? A meta-analysis. Clin Infect Dis 55:551–561PubMedCrossRefGoogle Scholar
  31. 31.
    Galar A, Yuste JR, Espinosa M, Guillen-Grima F, Hernaez-Crespo S, Leiva J (2012) Clinical and economic impact of rapid reporting of bacterial identification and antimicrobial susceptibility results of the most frequently processed specimen types. Eur J Clin Microbiol Infect Dis 31:2445–2452PubMedCrossRefGoogle Scholar
  32. 32.
    Kerremans JJ, Verboom P, Stijnen T, Hakkaart-van Roijen L, Goessens W, Verbrugh HA, Vos MC (2008) Rapid identification and antimicrobial susceptibility testing reduce antibiotic use and accelerate pathogen-directed antibiotic use. J Antimicrob Chemother 61:428–435PubMedCrossRefGoogle Scholar
  33. 33.
    Vlek AL, Bonten MJ, Boel CH (2012) Direct matrix-assisted laser desorption ionization time-of-flight mass spectrometry improves appropriateness of antibiotic treatment of bacteremia. PLoS One 7:e32589PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Perez KK, Olsen RJ, Musick WL, Cernoch PL, Davis JR, Land GA, Peterson LE, Musser JM (2013) Integrating rapid pathogen identification and antimicrobial stewardship significantly decreases hospital costs. Arch Pathol Lab Med 137:1247–1254PubMedCrossRefGoogle Scholar
  35. 35.
    Lasocki S, Scanvic A, Le Turdu F, Restoux A, Mentec H, Bleichner G, Sollet JP (2006) Evaluation of the Binax NOW Streptococcus pneumoniae urinary antigen assay in intensive care patients hospitalized for pneumonia. Intensive Care Med 32:1766–1772PubMedCrossRefGoogle Scholar
  36. 36.
    Falguera M, Ruiz-Gonzalez A, Schoenenberger JA, Touzon C, Gazquez I, Galindo C, Porcel JM (2010) Prospective, randomised study to compare empirical treatment versus targeted treatment on the basis of the urine antigen results in hospitalised patients with community-acquired pneumonia. Thorax 65:101–106PubMedCrossRefGoogle Scholar
  37. 37.
    Matta M, Kerneis S, Day N, Lescat M, Hoi AB, Varon E, Gutmann L, Mainardi JL (2010) Do clinicians consider the results of the BinaxNOW Streptococcus pneumoniae urinary antigen test when adapting antibiotic regimens for pneumonia patients? Clin Microbiol Infect 16:1389–1393PubMedCrossRefGoogle Scholar
  38. 38.
    Depuydt P, Benoit D, Vogelaers D, Decruyenaere J, Vandijck D, Claeys G, Verschraegen G, Blot S (2008) Systematic surveillance cultures as a tool to predict involvement of multidrug antibiotic resistant bacteria in ventilator-associated pneumonia. Intensive Care Med 34:675–682PubMedCrossRefGoogle Scholar
  39. 39.
    Jung B, Sebbane M, Chanques G, Courouble P, Verzilli D, Perrigault PF, Jean-Pierre H, Eledjam JJ, Jaber S (2009) Previous endotracheal aspirate allows guiding the initial treatment of ventilator-associated pneumonia. Intensive Care Med 35:101–107PubMedCrossRefGoogle Scholar
  40. 40.
    Joseph NM, Sistla S, Dutta TK, Badhe AS, Parija SC (2010) Ventilator-associated pneumonia: role of colonizers and value of routine endotracheal aspirate cultures. Int J Infect Dis 14:e723–e729PubMedCrossRefGoogle Scholar
  41. 41.
    Armand-Lefevre L, Angebault C, Barbier F, Hamelet E, Defrance G, Ruppe E, Bronchard R, Lepeule R, Lucet JC, El Mniai A, Wolff M, Montravers P, Plesiat P, Andremont A (2013) Emergence of imipenem-resistant gram-negative bacilli in intestinal flora of intensive care patients. Antimicrob Agents Chemother 57:1488–1495PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Routsi C, Pratikaki M, Platsouka E, Sotiropoulou C, Papas V, Pitsiolis T, Tsakris A, Nanas S, Roussos C (2013) Risk factors for carbapenem-resistant Gram-negative bacteremia in intensive care unit patients. Intensive Care Med 39:1253–1261PubMedCrossRefGoogle Scholar
  43. 43.
    Razazi K, Derde LP, Verachten M, Legrand P, Lesprit P, Brun-Buisson C (2012) Clinical impact and risk factors for colonization with extended-spectrum beta-lactamase-producing bacteria in the intensive care unit. Intensive Care Med 38:1769–1778PubMedCrossRefGoogle Scholar
  44. 44.
    Andes D, Craig WA (2005) Treatment of infections with ESBL-producing organisms: pharmacokinetic and pharmacodynamic considerations. Clin Microbiol Infect 11(Suppl 6):10–17PubMedCrossRefGoogle Scholar
  45. 45.
    Nguyen HM, Shier KL, Graber CJ (2014) Determining a clinical framework for use of cefepime and beta-lactam/beta-lactamase inhibitors in the treatment of infections caused by extended-spectrum-beta-lactamase-producing Enterobacteriaceae. J Antimicrob Chemother 69:871–880PubMedCrossRefGoogle Scholar
  46. 46.
    Aubert G, Carricajo A, Vautrin AC, Guyomarc’h S, Fonsale N, Page D, Brunel P, Rusch P, Zeni F (2005) Impact of restricting fluoroquinolone prescription on bacterial resistance in an intensive care unit. J Hosp Infect 59:83–89PubMedCrossRefGoogle Scholar
  47. 47.
    Nseir S, Di Pompeo C, Soubrier S, Delour P, Lenci H, Roussel-Delvallez M, Onimus T, Saulnier F, Mathieu D, Durocher A (2005) First-generation fluoroquinolone use and subsequent emergence of multiple drug-resistant bacteria in the intensive care unit. Crit Care Med 33:283–289PubMedCrossRefGoogle Scholar
  48. 48.
    Charbonneau P, Parienti JJ, Thibon P, Ramakers M, Daubin C, du Cheyron D, Lebouvier G, Le Coutour X, Leclercq R (2006) Fluoroquinolone use and methicillin-resistant Staphylococcus aureus isolation rates in hospitalized patients: a quasi experimental study. Clin Infect Dis 42:778–784PubMedCrossRefGoogle Scholar
  49. 49.
    Goorhuis A, Bakker D, Corver J, Debast SB, Harmanus C, Notermans DW, Bergwerff AA, Dekker FW, Kuijper EJ (2008) Emergence of Clostridium difficile infection due to a new hypervirulent strain, polymerase chain reaction ribotype 078. Clin Infect Dis 47:1162–1170PubMedCrossRefGoogle Scholar
  50. 50.
    Drieux L, Brossier F, Duquesnoy O, Aubry A, Robert J, Sougakoff W, Lecso-Bornet M, Jarlier V (2009) Increase in hospital-acquired bloodstream infections caused by extended spectrum beta-lactamase-producing Escherichia coli in a large French teaching hospital. Euro J Clin Microbiol Infect Dis 28:491–498CrossRefGoogle Scholar
  51. 51.
    Ortega M, Marco F, Soriano A, Almela M, Martinez JA, Munoz A, Mensa J (2009) Analysis of 4758 Escherichia coli bacteraemia episodes: predictive factors for isolation of an antibiotic-resistant strain and their impact on the outcome. J Antimicrob Chemother 63:568–574PubMedCrossRefGoogle Scholar
  52. 52.
    Costelloe C, Metcalfe C, Lovering A, Mant D, Hay AD (2010) Effect of antibiotic prescribing in primary care on antimicrobial resistance in individual patients: systematic review and meta-analysis. BMJ 340:c2096PubMedCrossRefGoogle Scholar
  53. 53.
    Berman SJ, Johnson EW, Nakatsu C, Alkan M, Chen R, LeDuc J (2004) Burden of infection in patients with end-stage renal disease requiring long-term dialysis. Clin Infect Dis 39:1747–1753PubMedCrossRefGoogle Scholar
  54. 54.
    El Solh AA, Pietrantoni C, Bhat A, Bhora M, Berbary E (2004) Indicators of potentially drug-resistant bacteria in severe nursing home-acquired pneumonia. Clin Infect Dis 39:474–480PubMedCrossRefGoogle Scholar
  55. 55.
    Polverino E, Dambrava P, Cilloniz C, Balasso V, Marcos MA, Esquinas C, Mensa J, Ewig S, Torres A (2010) Nursing home-acquired pneumonia: a 10 year single-centre experience. Thorax 65:354–359PubMedCrossRefGoogle Scholar
  56. 56.
    Scanvic A, Denic L, Gaillon S, Giry P, Andremont A, Lucet JC (2001) Duration of colonization by methicillin-resistant Staphylococcus aureus after hospital discharge and risk factors for prolonged carriage. Clin Infect Dis 32:1393–1398PubMedCrossRefGoogle Scholar
  57. 57.
    Lambotte O, Timsit JF, Garrouste-Orgeas M, Misset B, Benali A, Carlet J (2002) The significance of distal bronchial samples with commensals in ventilator-associated pneumonia: colonizer or pathogen? Chest 122:1389–1399PubMedCrossRefGoogle Scholar
  58. 58.
    Fowler VG Jr, Boucher HW, Corey GR, Abrutyn E, Karchmer AW, Rupp ME, Levine DP, Chambers HF, Tally FP, Vigliani GA, Cabell CH, Link AS, DeMeyer I, Filler SG, Zervos M, Cook P, Parsonnet J, Bernstein JM, Price CS, Forrest GN, Fatkenheuer G, Gareca M, Rehm SJ, Brodt HR, Tice A, Cosgrove SE (2006) Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N Engl J Med 355:653–665PubMedCrossRefGoogle Scholar
  59. 59.
    Murray KP, Zhao JJ, Davis SL, Kullar R, Kaye KS, Lephart P, Rybak MJ (2013) Early use of daptomycin versus vancomycin for methicillin-resistant Staphylococcus aureus bacteremia with vancomycin minimum inhibitory concentration > 1 mg/L: a matched cohort study. Clin Infect Dis 56:1562–1569PubMedCrossRefGoogle Scholar
  60. 60.
    Wunderink RG, Niederman MS, Kollef MH, Shorr AF, Kunkel MJ, Baruch A, McGee WT, Reisman A, Chastre J (2012) Linezolid in methicillin-resistant Staphylococcus aureus nosocomial pneumonia: a randomized, controlled study. Clin Infect Dis 54:621–629PubMedCrossRefGoogle Scholar
  61. 61.
    Patel N, Pai MP, Rodvold KA, Lomaestro B, Drusano GL, Lodise TP (2011) Vancomycin: we can not get there from here. Clin Infect Dis 52:969–974PubMedCrossRefGoogle Scholar
  62. 62.
    Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Sevransky JE, Sprung CL, Douglas IS, Jaeschke R, Osborn TM, Nunnally ME, Townsend SR, Reinhart K, Kleinpell RM, Angus DC, Deutschman CS, Machado FR, Rubenfeld GD, Webb S, Beale RJ, Vincent JL, Moreno R (2013) Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med 39:165–228PubMedCrossRefGoogle Scholar
  63. 63.
    Yu KT, Wyer PC (2008) Evidence-based emergency medicine/critically appraised topic. Evidence behind the 4-h rule for initiation of antibiotic therapy in community-acquired pneumonia. Ann Emerg Med 51:651–662PubMedCrossRefGoogle Scholar
  64. 64.
    Silber SH, Garrett C, Singh R, Sweeney A, Rosenberg C, Parachiv D, Okafo T (2003) Early administration of antibiotics does not shorten time to clinical stability in patients with moderate-to-severe community-acquired pneumonia. Chest 124:1798–1804PubMedCrossRefGoogle Scholar
  65. 65.
    SPILF (2009) 17th Consensus conference. Consensus conference on bacterial meningitis. Short text. Med Mal Infect 39:175–186CrossRefGoogle Scholar
  66. 66.
    Sime FB, Roberts MS, Peake SL, Lipman J, Roberts JA (2012) Does beta-lactam pharmacokinetic variability in critically Ill patients justify therapeutic drug monitoring? A systematic review. Ann Intensive Care 2:35PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Pletz MW, Lipman J (2013) Clinical measures for increased creatinine clearances and suboptimal antibiotic dosing. Intensive Care Med 39:1322–1324PubMedCrossRefGoogle Scholar
  68. 68.
    Povoa P, Spriet I, Zahar JR (2014) Antibiotic dosing in the critically ill: asking the same questions but expecting different answers. Intensive Care Med 40:1780–1782PubMedCrossRefGoogle Scholar
  69. 69.
    Udy AA, Roberts JA, Lipman J (2013) Clinical implications of antibiotic pharmacokinetic principles in the critically ill. Intensive Care Med 39:2070–2082PubMedCrossRefGoogle Scholar
  70. 70.
    Chatellier D, Jourdain M, Mangalaboyi J, Ader F, Chopin C, Derambure P, Fourrier F (2002) Cefepime-induced neurotoxicity: an underestimated complication of antibiotherapy in patients with acute renal failure. Intensive Care Med 28:214–217PubMedCrossRefGoogle Scholar
  71. 71.
    Craig WA (1998) Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 26:1–10; quiz 11–12PubMedCrossRefGoogle Scholar
  72. 72.
    Roberts JA, Paul SK, Akova M, Bassetti M, De Waele JJ, Dimopoulos G, Kaukonen KM, Koulenti D, Martin C, Montravers P, Rello J, Rhodes A, Starr T, Wallis SC, Lipman J (2014) DALI: defining antibiotic levels in intensive care unit patients: are current beta-lactam antibiotic doses sufficient for critically ill patients? Clin Infect Dis 58:1072–1083PubMedCrossRefGoogle Scholar
  73. 73.
    Mohr JF, Wanger A, Rex JH (2004) Pharmacokinetic/pharmacodynamic modeling can help guide targeted antimicrobial therapy for nosocomial gram-negative infections in critically ill patients. Diagn Microbiol Infect Dis 48:125–130PubMedCrossRefGoogle Scholar
  74. 74.
    Li C, Du X, Kuti JL, Nicolau DP (2007) Clinical pharmacodynamics of meropenem in patients with lower respiratory tract infections. Antimicrob Agents Chemother 51:1725–1730PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Falagas ME, Tansarli GS, Ikawa K, Vardakas KZ (2013) Clinical outcomes with extended or continuous versus short-term intravenous infusion of carbapenems and piperacillin/tazobactam: a systematic review and meta-analysis. Clin Infect Dis 56:272–282PubMedCrossRefGoogle Scholar
  76. 76.
    Spapen HD, Janssen van Doorn K, Diltoer M, Verbrugghe W, Jacobs R, Dobbeleir N, Honore PM, Jorens PG (2011) Retrospective evaluation of possible renal toxicity associated with continuous infusion of vancomycin in critically ill patients. Ann Intensive Care 1:26PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Roberts JA, Taccone FS, Udy AA, Vincent JL, Jacobs F, Lipman J (2011) Vancomycin dosing in critically ill patients: robust methods for improved continuous-infusion regimens. Antimicrob Agents Chemother 55:2704–2709PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Abdul-Aziz MH, Dulhunty JM, Bellomo R, Lipman J, Roberts JA (2012) Continuous beta-lactam infusion in critically ill patients: the clinical evidence. Ann Intensive Care 2:37PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Legrand M, Max A, Schlemmer B, Azoulay E, Gachot B (2011) The strategy of antibiotic use in critically ill neutropenic patients. Ann Intensive Care 1:22PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Gyssens IC, Kern WV, Livermore DM (2013) The role of antibiotic stewardship in limiting antibacterial resistance among hematology patients. Haematologica 98:1821–1825PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Chastre J, Wolff M, Fagon JY, Chevret S, Thomas F, Wermert D, Clementi E, Gonzalez J, Jusserand D, Asfar P, Perrin D, Fieux F, Aubas S (2003) Comparison of 8 versus 15 days of antibiotic therapy for ventilator-associated pneumonia in adults: a randomized trial. JAMA 290:2588–2598PubMedCrossRefGoogle Scholar
  82. 82.
    Singh N, Rogers P, Atwood CW, Wagener MM, Yu VL (2000) Short-course empiric antibiotic therapy for patients with pulmonary infiltrates in the intensive care unit. A proposed solution for indiscriminate antibiotic prescription. Am J Respir Crit Care Med 162:505–511PubMedCrossRefGoogle Scholar
  83. 83.
    Bouadma L, Luyt CE, Tubach F, Cracco C, Alvarez A, Schwebel C, Schortgen F, Lasocki S, Veber B, Dehoux M, Bernard M, Pasquet B, Regnier B, Brun-Buisson C, Chastre J, Wolff M (2010) Use of procalcitonin to reduce patients’ exposure to antibiotics in intensive care units (PRORATA trial): a multicentre randomised controlled trial. Lancet 375:463–474PubMedCrossRefGoogle Scholar
  84. 84.
    Matthaiou DK, Ntani G, Kontogiorgi M, Poulakou G, Armaganidis A, Dimopoulos G (2012) An ESICM systematic review and meta-analysis of procalcitonin-guided antibiotic therapy algorithms in adult critically ill patients. Intensive Care Med 38:940–949PubMedCrossRefGoogle Scholar
  85. 85.
    Havey TC, Fowler RA, Daneman N (2011) Duration of antibiotic therapy for bacteremia: a systematic review and meta-analysis. Crit Care 15:R267PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.
    Chong YP, Moon SM, Bang KM, Park HJ, Park SY, Kim MN, Park KH, Kim SH, Lee SO, Choi SH, Jeong JY, Woo JH, Kim YS (2013) Treatment duration for uncomplicated Staphylococcus aureus bacteremia to prevent relapse: analysis of a prospective observational cohort study. Antimicrob Agents Chemother 57:1150–1156PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Thwaites GE, Edgeworth JD, Gkrania-Klotsas E, Kirby A, Tilley R, Torok ME, Walker S, Wertheim HF, Wilson P, Llewelyn MJ (2011) Clinical management of Staphylococcus aureus bacteraemia. Lancet Infect Dis 11:208–222PubMedCrossRefGoogle Scholar
  88. 88.
    Rimawi RH, Mazer MA, Siraj DS, Gooch M, Cook PP (2013) Impact of regular collaboration between infectious diseases and critical care practitioners on antimicrobial utilization and patient outcome. Crit Care Med 41:2099–2107PubMedCrossRefGoogle Scholar
  89. 89.
    De Waele JJ, Bassetti M, Martin-Loeches I (2014) Impact of de-escalation on ICU patients’ prognosis. Intensive Care Med 40:1583–1585PubMedCrossRefGoogle Scholar
  90. 90.
    Kapoor G, Saigal S (2014) De-escalation in severe sepsis: still an important part of our armamentarium against antimicrobial resistance. Intensive Care Med 40:1618PubMedCrossRefGoogle Scholar
  91. 91.
    Leone M, Bechis C, Baumstarck K (2014) De-escalation in severe sepsis: still an important part of our armamentarium against antimicrobial resistance, of course! Intensive Care Med 40:1619PubMedCrossRefGoogle Scholar
  92. 92.
    Silva BN, Andriolo RB, Atallah AN, Salomao R (2013) De-escalation of antimicrobial treatment for adults with sepsis, severe sepsis or septic shock. Cochrane Database Syst Rev 3:CD007934PubMedGoogle Scholar
  93. 93.
    Leone M, Bechis C, Baumstarck K, Lefrant JY, Albanese J, Jaber S, Lepape A, Constantin JM, Papazian L, Bruder N, Allaouchiche B, Bezulier K, Antonini F, Textoris J, Martin C (2014) De-escalation versus continuation of empirical antimicrobial treatment in severe sepsis: a multicenter non-blinded randomized noninferiority trial. Intensive Care Med 40:1399–1408PubMedCrossRefGoogle Scholar
  94. 94.
    Kofteridis DP, Alexopoulou C, Valachis A, Maraki S, Dimopoulou D, Georgopoulos D, Samonis G (2010) Aerosolized plus intravenous colistin versus intravenous colistin alone for the treatment of ventilator-associated pneumonia: a matched case-control study. Clin Infect dis 51:1238–1244PubMedCrossRefGoogle Scholar
  95. 95.
    Nair GB, Niederman MS (2015) Ventilator-associated pneumonia: present understanding and ongoing debates. Intensive Care Med 41:34–48PubMedCrossRefGoogle Scholar
  96. 96.
    Palmer LB, Smaldone GC (2014) Reduction of bacterial resistance with inhaled antibiotics in the intensive care unit. Am J Respir Crit Care Med 189:1225–1233PubMedCrossRefGoogle Scholar
  97. 97.
    Daneman N, Sarwar S, Fowler RA, Cuthbertson BH, Su DCSG (2013) Effect of selective decontamination on antimicrobial resistance in intensive care units: a systematic review and meta-analysis. Lancet Infect Dis 13:328–341PubMedCrossRefGoogle Scholar
  98. 98.
    Kollef MH, Chastre J, Clavel M, Restrepo MI, Michiels B, Kaniga K, Cirillo I, Kimko H, Redman R (2012) A randomized trial of 7-day doripenem versus 10-day imipenem-cilastatin for ventilator-associated pneumonia. Crit Care 16:R218PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and ESICM 2015

Authors and Affiliations

  • Cédric Bretonnière
    • 1
    • 3
    Email author
  • Marc Leone
    • 2
  • Christophe Milési
    • 4
  • Bernard Allaouchiche
    • 5
  • Laurence Armand-Lefevre
    • 6
  • Olivier Baldesi
    • 7
  • Lila Bouadma
    • 8
  • Dominique Decré
    • 9
  • Samy Figueiredo
    • 10
    • 11
  • Rémy Gauzit
    • 12
  • Benoît Guery
    • 13
  • Nicolas Joram
    • 14
  • Boris Jung
    • 15
    • 16
  • Sigismond Lasocki
    • 17
    • 29
  • Alain Lepape
    • 18
  • Fabrice Lesage
    • 19
  • Olivier Pajot
    • 20
  • François Philippart
    • 21
  • Bertrand Souweine
    • 22
  • Pierre Tattevin
    • 23
  • Jean-François Timsit
    • 8
    • 24
  • Renaud Vialet
    • 25
  • Jean Ralph Zahar
    • 26
  • Benoît Misset
    • 27
    • 28
  • Jean-Pierre Bedos
    • 30
  1. 1.Réanimation Médicale Polyvalente, Pôle Hospitalo-Universitaire 3CHU-Immeuble Jean MonnetNantesFrance
  2. 2.Service d’anesthésie et de Réanimation, Hôpital Nord, Assistance Publique Hôpitaux de MarseilleAix Marseille UniversitéMarseilleFrance
  3. 3.EA3826, Thérapeutiques Cliniques et Expérimentales des InfectionsUniversité de NantesNantesFrance
  4. 4.Service de Réanimation PédiatriqueHôpital Arnaud de VilleneuveMontpellierFrance
  5. 5.Department of Intensive CareHôtel-Dieu HospitalLyonFrance
  6. 6.Assistance Publique Hôpitaux de Paris, Groupe Hospitalier Bichat-Claude Bernard, Service de BactériologieParis Cedex 18France
  7. 7.Centre Hospitalier Intercommunal Aix-PertuisAix En ProvenceFrance
  8. 8.AP-HP, Hôpital Bichat, Réanimation Médicale et des Maladies InfectieusesParisFrance
  9. 9.AP-HP, MicrobiologySt-Antoine HospitalParisFrance
  10. 10.Département Anesthésie-Réanimation, Hôpital de BicêtreAssistance Publique/Hôpitaux de ParisK.-BicêtreFrance
  11. 11.Faculté de Médecine et, INSERM U914 Emerging Resistance to AntibioticsUniversité Paris-SudOrsayFrance
  12. 12.Infectious Disease and Intensive Care UnitCochin University HospitalParisFrance
  13. 13.Service de Gestion du Risque Infectieux, Vigilances et InfectiologieHôpital HuriezLilleFrance
  14. 14.Réanimation PédiatriquePôle Hospitalo-Universitaire 5NantesFrance
  15. 15.Department of Critical Care Medicine and AnesthesiologySaint Eloi Teaching HospitalMontpellierFrance
  16. 16.Centre National de la Recherche Scientifique (CNRS 9214)Institut National de la Santé et de la Recherche Médicale (INSERM U-1046)MontpellierFrance
  17. 17.University MontpellierMontpellierFrance
  18. 18.Intensive Care UnitUniversity Hospital Lyon-SudPierre-BéniteFrance
  19. 19.Hôpital Necker-Enfants Malades Réanimation Pédiatrique, APHPHôpital NeckerParisFrance
  20. 20.Intensive Care UnitVictor Dupouy HospitalArgenteuilFrance
  21. 21.Medical Surgical ICUGroupe Hospitalier Paris Saint JosephParisFrance
  22. 22.Medical Intensive Care UnitUniversity Hospital of Clermont-FerrandClermont-FerrandFrance
  23. 23.Infectious Diseases and Intensive Care UnitPontchaillou University HospitalRennesFrance
  24. 24.UMR 1137, IAME Team 5Decision Sciences in Infectious Diseases, Control and Care Inserm/Univ Paris DiderotParisFrance
  25. 25.Department of Anesthesia and Intensive CareMarseilles University Hospital SystemMarseillesFrance
  26. 26.Unité de Prévention et de Lutte Contre les Infections NosocomialesUniversité d’Angers, CHU AngersAngersFrance
  27. 27.Service de Médecine Intensive et Réanimation, Centre de Recherche CliniqueGroupe Hospitalier Paris Saint JosephParisFrance
  28. 28.Université Paris DescartesParisFrance
  29. 29.Département d’Anesthésie-RéanimationCHU AngersAngersFrance
  30. 30.Réanimation, Hôpital André MignotCentre Hospitalier de VersaillesLe ChesnayFrance

Personalised recommendations