Intensive Care Medicine

, Volume 41, Issue 8, pp 1393–1401 | Cite as

Endogenous IgG hypogammaglobulinaemia in critically ill adults with sepsis: systematic review and meta-analysis

  • Manu Shankar-Hari
  • Nicholas Culshaw
  • Benjamin Post
  • Eduardo Tamayo
  • David Andaluz-Ojeda
  • Jesús F. Bermejo-Martín
  • Sebastian Dietz
  • Karl Werdan
  • Richard Beale
  • Jo Spencer
  • Mervyn Singer
Systematic Review



Plasma immunoglobulin concentrations are acutely altered in critically ill patients with sepsis. However, the association between immunoglobulin levels on the day of sepsis diagnosis and subsequent mortality is inconsistent.


Systematic review of studies that report immunoglobulin measurements and mortality among adults with sepsis managed in a critical care setting. Fixed and random effect meta-analyses were conducted using low IgG levels as primary exposure and acute mortality as the primary outcome. Both variables were used as defined in individual studies.


The prevalence of a low immunoglobulin G (IgG) concentration on the day of sepsis diagnosis was variable [58.3 % (IQR 38.4–65.5 %)]. Three cut-off points (6.1, 6.5 and 8.7 g/L) were used to define the lower limit of IgG concentrations in the included studies. A subnormal IgG level on the day of sepsis diagnosis was not associated with an increased risk of death in adult patients with severe sepsis and/or septic shock by both fixed and random effect meta-analysis (OR [95 % CI] 1.32 [0.93–1.87] and 1.48 [0.78–2.81], respectively).


This systematic review identifies studies of limited quality reporting heterogeneous sepsis cohorts with varying lower limits of normal for IgG. Although our data suggest that a subnormal IgG measurement on the day of sepsis diagnosis does not identify a subgroup of patients with a higher risk of death, further studies are needed to confirm or refute this finding, and whether optimal cut-offs and time windows can be defined for IgG measurement. This would determine whether patients receiving intravenous immunoglobulin therapy for sepsis could be stratified using IgG levels.


Sepsis Adult Immunoglobulin Mortality Survival rate 



Acute physiology and chronic health evaluation II score


Acute respiratory distress syndrome




Intravenous immunoglobulin


Newcastle–Ottawa score checklist


Randomised controlled trial



MSH, RB, JS and MS acknowledge the support of the UK National Institute for Health Research (NIHR) Biomedical Research Centre schemes. MS is a recipient of a UK NIHR Senior Investigator Fellowship.

Conflicts of interest

The authors declare that they have no competing interests.

Supplementary material

134_2015_3845_MOESM1_ESM.pdf (22 kb)
Supplementary material 1 (PDF 21 kb)


  1. 1.
    Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL, Ramsay G, Sccm/Esicm/Accp/Ats/Sis (2003) 2001 SCCM/ESICM/ACCP/ATS/SIS international sepsis definitions conference. Crit Care Med 31:1250–1256PubMedCrossRefGoogle Scholar
  2. 2.
    Angus DC, van der Poll T (2013) Severe sepsis and septic shock. N Engl J Med 369:840–851PubMedCrossRefGoogle Scholar
  3. 3.
    Hutchins NA, Unsinger J, Hotchkiss RS, Ayala A (2014) The new normal: immunomodulatory agents against sepsis immune suppression. Trends Mol Med 20:224–233PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Marshall JC (2014) Why have clinical trials in sepsis failed? Trends Mol Med 20:195–203PubMedCrossRefGoogle Scholar
  5. 5.
    Shankar-Hari M, Deutschman CS, Singer M (2015) Do we need a new definition of sepsis? Intensive Care Med. doi: 10.1007/s00134-015-3680-x
  6. 6.
    Soares MO, Welton NJ, Harrison DA, Peura P, Shankar-Hari M, Harvey SE, Madan JJ, Ades AE, Palmer SJ, Rowan KM (2012) An evaluation of the feasibility, cost and value of information of a multicentre randomised controlled trial of intravenous immunoglobulin for sepsis (severe sepsis and septic shock): incorporating a systematic review, meta-analysis and value of information analysis. Health Technol Assess 16:1–186CrossRefGoogle Scholar
  7. 7.
    Shankar-Hari M, Spencer J, Sewell WA, Rowan KM, Singer M (2012) Bench-to-bedside review: immunoglobulin therapy for sepsis—biological plausibility from a critical care perspective. Crit Care 16:206PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Biomarkers Definitions Working G (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69:89–95CrossRefGoogle Scholar
  9. 9.
    Buyse M, Sargent DJ, Grothey A, Matheson A, de Gramont A (2010) Biomarkers and surrogate end points—the challenge of statistical validation. Nat Rev Clin Oncol 7:309–317PubMedCrossRefGoogle Scholar
  10. 10.
    (2014) Abstracts for ESICM-Barcelona 2014. Intensive Care Med 40(Suppl 1):1–308Google Scholar
  11. 11.
    Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 151:264–269PubMedCrossRefGoogle Scholar
  12. 12.
    Bone RC, Sibbald WJ, Sprung CL (1992) The ACCP-SCCM consensus conference on sepsis and organ failure. Chest 101:1481–1483PubMedCrossRefGoogle Scholar
  13. 13.
    Andaluz-Ojeda D, Iglesias V, Bobillo F, Almansa R, Rico L, Gandia F, Loma AM, Nieto C, Diego R, Ramos E, Nocito M, Resino S, Eiros JM, Tamayo E, de Lejarazu RO, Bermejo-Martin JF (2011) Early natural killer cell counts in blood predict mortality in severe sepsis. Crit Care 15:R243PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Bermejo-Martin JF, Rodriguez-Fernandez A, Herran-Monge R, Andaluz-Ojeda D, Muriel-Bombin A, Merino P, Garcia-Garcia MM, Citores R, Gandia F, Almansa R, Blanco J, Group G (2014) Immunoglobulins IgG1, IgM and IgA: a synergistic team influencing survival in sepsis. J Intern Med 276:404–412PubMedCrossRefGoogle Scholar
  15. 15.
    Huang SW, Chen J, Ouyang B, Yang CH, Chen MY, Guan XD (2009) Immunotherapy improves immune homeostasis and increases survival rate of septic patients. Chin J Traumatol 12:344–349PubMedGoogle Scholar
  16. 16.
    Ekdahl K, Rollof J, Oxelius VA, Engellau J, Braconier JH (1994) Analysis of immunoglobulin isotype levels in acute pneumococcal bacteremia and in convalescence. Eur J Clin Microbiol Infect Dis 13:374–378PubMedCrossRefGoogle Scholar
  17. 17.
    Heredia-Rodriguez M, Gutierrez-Junco S, Gomez-Sanchez E, Alvarez-Fuente E, Ruiz-Granado P, Almansa R (2013) Endogenous immunoglobulin subclasses and isotypes in septic shock patients in the postoperative period. Eur J Anaesthesiol 30:185CrossRefGoogle Scholar
  18. 18.
    Venet F, Gebeile R, Bancel J, Guignant C, Poitevin-Later F, Malcus C, Lepape A, Monneret G (2011) Assessment of plasmatic immunoglobulin G, A and M levels in septic shock patients. Int Immunopharmacol 11:2086–2090PubMedCrossRefGoogle Scholar
  19. 19.
    Tamayo E, Fernandez A, Almansa R, Carrasco E, Goncalves L, Heredia M, Andaluz-Ojeda D, March G, Rico L, Gomez-Herreras JI, de Lejarazu RO, Bermejo-Martin JF (2012) Beneficial role of endogenous immunoglobulin subclasses and isotypes in septic shock. J Crit Care 27:616–622PubMedCrossRefGoogle Scholar
  20. 20.
    Taccone FS, Stordeur P, De Backer D, Creteur J, Vincent JL (2009) Gamma-globulin levels in patients with community-acquired septic shock. Shock 32:379–385PubMedCrossRefGoogle Scholar
  21. 21.
    Almansa R, Wain J, Tamayo E, Andaluz-Ojeda D, Martin-Loeches I, Ramirez P, Bermejo-Martin JF (2013) Immunological monitoring to prevent and treat sepsis. Crit Care 17:109PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Werdan K, Pilz G, Bujdoso O, Fraunberger P, Neeser G, Schmieder RE, Viell B, Marget W, Seewald M, Walger P, Stuttmann R, Speichermann N, Peckelsen C, Kurowski V, Osterhues HH, Verner L, Neumann R, Muller-Werdan U, Score-Based Immunoglobulin Therapy of Sepsis Study G (2007) Score-based immunoglobulin G therapy of patients with sepsis: the SBITS study. Crit Care Med 35:2693–2701PubMedCrossRefGoogle Scholar
  23. 23.
    Dietz S, Lautenschlaeger C, Mueller-Werdan U, Werdan K (2010) Low levels of immunoglobulin G in patients with sepsis or septic shock: a signum mali ominis? Crit Care 14:P26PubMedCentralCrossRefGoogle Scholar
  24. 24.
    Shankar-Hari M, Singer M, Cornelius V, Sanderson B, Gordon A, Terblanche M, Rowan K, Beale R, Spencer J (2013) Low immunoglobulin G levels at admission reduced the odds for 28 day mortality compared to normal levels: prospective cohort study in severe sepsis. Intensive Care Med 39(2):151 (abstract 0177)Google Scholar
  25. 25.
    Myrianthefs PM, Boutzouka E, Baltopoulos GJ (2010) Gamma-globulin levels in patients with community-acquired septic shock. Shock 33:556–557; author reply 557PubMedCrossRefGoogle Scholar
  26. 26.
    Lee WL, Slutsky AS (2010) Sepsis and endothelial permeability. N Engl J Med 363:689–691PubMedCrossRefGoogle Scholar
  27. 27.
    Michaelsen TE, Sandlie I, Bratlie DB, Sandin RH, Ihle O (2009) Structural difference in the complement activation site of human IgG1 and IgG3. Scand J Immunol 70:553–564PubMedCrossRefGoogle Scholar
  28. 28.
    Nordenfelt P, Waldemarson S, Linder A, Morgelin M, Karlsson C, Malmstrom J, Bjorck L (2012) Antibody orientation at bacterial surfaces is related to invasive infection. J Exp Med 209:2367–2381PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Drewry AM, Samra N, Skrupky LP, Fuller BM, Compton SM, Hotchkiss RS (2014) Persistent lymphopenia after diagnosis of sepsis predicts mortality. Shock 42:383–391PubMedCrossRefGoogle Scholar
  30. 30.
    Felmet KA, Hall MW, Clark RS, Jaffe R, Carcillo JA (2005) Prolonged lymphopenia, lymphoid depletion, and hypoprolactinemia in children with nosocomial sepsis and multiple organ failure. J Immunol 174:3765–3772PubMedCrossRefGoogle Scholar
  31. 31.
    Inoue S, Suzuki-Utsunomiya K, Okada Y, Taira T, Iida Y, Miura N, Tsuji T, Yamagiwa T, Morita S, Chiba T, Sato T, Inokuchi S (2013) Reduction of immunocompetent T cells followed by prolonged lymphopenia in severe sepsis in the elderly. Crit Care Med 41:810–819PubMedCrossRefGoogle Scholar
  32. 32.
    Boomer JS, To K, Chang KC, Takasu O, Osborne DF, Walton AH, Bricker TL, Jarman SD 2nd, Kreisel D, Krupnick AS, Srivastava A, Swanson PE, Green JM, Hotchkiss RS (2011) Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA 306:2594–2605PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Boomer JS, Shuherk-Shaffer J, Hotchkiss RS, Green JM (2012) A prospective analysis of lymphocyte phenotype and function over the course of acute sepsis. Crit Care 16:R112PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    de Pablo R, Monserrat J, Prieto A, Alvarez-Mon M (2014) Role of circulating lymphocytes in patients with sepsis. BioMed Res Int 2014:671087PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Opal SM, Dellinger RP, Vincent JL, Masur H, Angus DC (2014) The next generation of sepsis clinical trial designs: what is next after the demise of recombinant human activated protein C? Crit Care Med 42:1714–1721PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and ESICM 2015

Authors and Affiliations

  • Manu Shankar-Hari
    • 1
    • 2
    • 3
  • Nicholas Culshaw
    • 1
  • Benjamin Post
    • 1
  • Eduardo Tamayo
    • 4
  • David Andaluz-Ojeda
    • 4
  • Jesús F. Bermejo-Martín
    • 4
  • Sebastian Dietz
    • 5
  • Karl Werdan
    • 5
  • Richard Beale
    • 1
    • 2
  • Jo Spencer
    • 3
  • Mervyn Singer
    • 6
  1. 1.Department of Critical Care MedicineGuy’s and St Thomas’ NHS Foundation Trust, St Thomas’ HospitalLondonUK
  2. 2.Division of Asthma, Department of Intensive Care MedicineAllergy and Lung Biology, King’s College LondonLondonUK
  3. 3.Peter Gorer Department of ImmunbiologyKing’s College LondonLondonUK
  4. 4.Hospital Clínico Universitario de ValladolidValladolidSpain
  5. 5.St. Marienkrankenhaus SiegenSiegenGermany
  6. 6.University College LondonLondonUK

Personalised recommendations