Advertisement

Intensive Care Medicine

, Volume 41, Issue 7, pp 1264–1272 | Cite as

Prognostication of post-cardiac arrest coma: early clinical and electroencephalographic predictors of outcome

  • Adithya Sivaraju
  • Emily J. Gilmore
  • Charles R. Wira
  • Anna Stevens
  • Nishi Rampal
  • Jeremy J. Moeller
  • David M. Greer
  • Lawrence J. Hirsch
  • Nicolas GaspardEmail author
Original

Abstract

Purpose

To determine the temporal evolution, clinical correlates, and prognostic significance of electroencephalographic (EEG) patterns in post-cardiac arrest comatose patients treated with hypothermia.

Methods

Prospective cohort study of consecutive post-anoxic patients receiving hypothermia and continuous EEG monitoring between May 2011 and June 2014 (n = 100). In addition to clinical variables, 5-min EEG clips at 6, 12, 24, 48, and 72 h after return of spontaneous circulation (ROSC) were reviewed. EEG background was classified according to the American Clinical Neurophysiological Society critical care EEG terminology. Clinical outcome at discharge was dichotomized as good [Glasgow outcome scale (GOS) 4–5, low to moderate disability] vs. poor (GOS 1–3, severe disability to death).

Results

Non-ventricular fibrillation/tachycardia arrest, longer time to ROSC, absence of brainstem reflexes, extensor or no motor response, lower pH, higher lactate, hypotension requiring >2 vasopressors, and absence of reactivity on EEG were all associated with poor outcome (all p values ≤0.01). Suppression-burst at any time indicated a poor prognosis, with a 0 % false positive rate (FPR) [95 % confidence interval (CI) 0–10 %]. All patients (54/54) with suppression-burst or a low voltage (<20 µV) EEG at 24 h had a poor outcome, with an FPR of 0 % [95 % CI 0–8 %]. Normal background voltage ≥20 µV without epileptiform discharges at any time interval carried a positive predictive value >70 % for good outcome.

Conclusions

Suppression-burst or a low voltage at 24 h after ROSC was not compatible with good outcome in this series. Normal background voltage without epileptiform discharges predicted a good outcome.

Keywords

Cardiac arrest Continuous EEG Prognostication Coma EEG reactivity Myoclonus 

Notes

Conflicts of interest

The authors declare that they have no conflict of interest.

Disclosures

Adithya Sivaraju, MBBS, MHA: Dr. Sivaraju reports no disclosures. Emily Gilmore, MD: Dr. Gilmore is supported by Yale’s Center for Clinical Investigaton’s CTSA Grant (ULTR000142) and Yale’s Claude D. Pepper Older Americans Independence Center (P30AG021342 NIH/NIA). Charles R. Wira, MD: Dr. Wira reports no disclosures. Anna Stevens, MD, PhD: Dr. Stevens reports no disclosures. Nishi Rampal, MD: Dr. Rampal reports no disclosures. Jeremy J. Moeller, MD: Dr. Moeller has received royalties or payments from UpToDate, Inc., NeuroSeriesLive, QuantiaMD, and the Canadian Pharmacists’ Association. David M. Greer, MD: Dr. Greer reports no disclosures. Lawrence J. Hirsch, MD: Dr. Hirsch has received (a) research support to Yale for investigator-initiated studies from UCB-Pharma, Upsher-Smith, Lundbeck, Eisai, and Sunovion; consultation fees for advising from Lundbeck, Upsher-Smith, Neuropace, and Allergan; (b) honoraria for speaking from Natus and Neuropace; (c) royalties for authoring chapters for UpToDate-Neurology, and from Wiley for co-authoring the book Atlas of EEG in Critical Care, by Hirsch and Brenner, 2010.Nicolas Gaspard MD, PhD: Dr. Gaspard is a Clinical Master Specialist of the Belgian Fund for Scientific Research (FNRS) and received royalties for authoring chapters for UpToDate-Neurology. Dr. Sivaraju and Dr. Gaspard had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Selected findings of the manuscript were presented as a poster and platform presentation at the American Clinical Neurophysiological Society Meeting; February 7, 2015; Houston, Texas.

Supplementary material

134_2015_3834_MOESM1_ESM.pdf (69 kb)
Supplementary material 1 (PDF 69 kb)
134_2015_3834_MOESM2_ESM.pdf (52 kb)
Supplementary material 2 (PDF 51 kb)

References

  1. 1.
    Taccone F, Cronberg T, Friberg H, Greer D, Horn J, Oddo M, Scolletta S, Vincent JL (2014) How to assess prognosis after cardiac arrest and therapeutic hypothermia. Crit Care 18:202PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Wijdicks E, Hijdra A, Young G, Bassetti C, Weibi S (2006) Practice parameter: prediction of outcome in comatose survivors after cardiopulmonary resuscitation (an evidence-based review): report of the quality standards subcommittee of the American Academy of Neurology. Neurology 67:203–210PubMedCrossRefGoogle Scholar
  3. 3.
    Thenayan E, Savard M, Sharpe M, Norton L, Young B (2008) Predictors of poor neurologic outcome after induced mild hypothermia following cardiac arrest. Neurology 71:1535–1537PubMedCrossRefGoogle Scholar
  4. 4.
    Rossetti A, Oddo M, Logroscino G, Kaplan P (2010) Prognostication after cardiac arrest and hypothermia: a prospective study. Ann Neurol 67:301–307PubMedGoogle Scholar
  5. 5.
    Rossetti A, Urbano L, Delodder F, Kaplan P, Oddo M (2010) Prognostic value of continuous EEG monitoring during therapeutic hypothermia after cardiac arrest. Crit Care 14:R173PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Oddo M, Rossetti A (2011) Predicting neurological outcome after cardiac arrest. Curr Opin Crit Care 17:254–259PubMedCrossRefGoogle Scholar
  7. 7.
    Rossetti A, Carrera E, Oddo M (2012) Early EEG correlates of neuronal injury after brain anoxia. Neurology 78:796–802PubMedCrossRefGoogle Scholar
  8. 8.
    Crepeau A, Rabinstein A, Fugate J, Mandrekar J, Wijdicks EF, White R, Britton J (2013) Continuous EEG in therapeutic hypothermia after cardiac arrest: prognostic and clinical value. Neurology 80:339–344PubMedCrossRefGoogle Scholar
  9. 9.
    Gilmore E, Gaspard N, Choi HA, Cohen E, Burkart KM, Chong DH, Claassen J, Hirsch LJ (2015) Acute brain failure in severe sepsis: a prospective study in the medical intensive care unit utilizing continuous EEG monitoring. Intensive Care Med 41:686–964Google Scholar
  10. 10.
    Cloostermans M, Meulen F, Eertman C, Hom H, Van Putten MJAM (2012) Continuous electroencephalography monitoring for early prediction of neurological outcome in postanoxic patients after cardiac arrest. Crit Care Med 40:2867–2875PubMedCrossRefGoogle Scholar
  11. 11.
    Rundgren M, Westhall E, Cronberg T, Rosén I, Friberg H (2010) Continuous amplitude-integrated electroencephalogram predicts outcome in hypothermia-treated cardiac arrest patients. Crit Care Med 38:1838–1844PubMedCrossRefGoogle Scholar
  12. 12.
    Alvarez V, Sierra-Marcos A, Oddo M, Rossetti AO (2013) Yield of intermittent versus continuous EEG in comatose survivors of cardiac arrest treated with hypothermia. Crit Care 17:R190PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Hirsch LJ, Laroche SM, Gaspard N, Gerard E, Svoronos A, Herman ST, Mani R, Arif H, Jette N, Minazad Y, Kerrigan JF, Vespa P, Hantus S, Claassen J, Young GB, So E, Kaplan PW, Nuwer MR, Fountain NB, Drislane FW (2013) American Clinical Neurophysiology Society’s standardized critical care EEG terminology: 2012 version. J Clin Neurophysiol 30:1–27PubMedCrossRefGoogle Scholar
  14. 14.
    Gaspard N, Hirsch LJ, Laroche SM, Hahn CD, Westover MB (2014) Interrater agreement for critical care EEG terminology. Epilepsia 55:1366–1373PubMedCrossRefGoogle Scholar
  15. 15.
    Hofmeijer J, Tjepkema-Cloostermans M, Putten M (2014) Burst-suppression with identical bursts: a distinct EEG pattern with poor outcome in postanoxic coma. J Clin Neurophysiol 125:947–954CrossRefGoogle Scholar
  16. 16.
    Greer DM, Yang J, Scripko PD, Sims JR, Cash S, Kilbride R, Wu O, Hafler JP, Schoenfeld DA, Furie KL (2012) Clinical examination for outcome prediction in nontraumatic coma. Crit Care Med 40:1150–1156PubMedCrossRefGoogle Scholar
  17. 17.
    Wennervirta JE, Ermes JM, Tianen MS, Salmi TK, Hynninen MS, Sarkela MOK, Hynynen MJ, Stenman UH, Viertio HE, Saastamoinen KP, Pettila VY, Vakkuri AP (2009) Hypothermia-treated cardiac arrest patients with good neurological outcome differ in early quantitative variables of EEG suppression and epileptiform activity. Crit Care Med 37:2427–2435PubMedCrossRefGoogle Scholar
  18. 18.
    Oddo M, Rossetti A (2014) Early multimodal outcome prediction after cardiac arrest in patients treated with hypothermia. Crit Care Med 42:1340–1347PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and ESICM 2015

Authors and Affiliations

  • Adithya Sivaraju
    • 1
  • Emily J. Gilmore
    • 2
  • Charles R. Wira
    • 3
  • Anna Stevens
    • 3
  • Nishi Rampal
    • 1
  • Jeremy J. Moeller
    • 1
  • David M. Greer
    • 2
  • Lawrence J. Hirsch
    • 1
  • Nicolas Gaspard
    • 1
    • 4
    Email author
  1. 1.Comprehensive Epilepsy Center, Department of NeurologyYale UniversityNew HavenUSA
  2. 2.Division of Neurocritical Care and Emergency Neurology, Department of NeurologyYale UniversityNew HavenUSA
  3. 3.Department of Emergency MedicineYale UniversityNew HavenUSA
  4. 4.Department of NeurologyUniversité Libre de Bruxelles-Hôpital ErasmeBrusselsBelgium

Personalised recommendations