Intensive Care Medicine

, Volume 41, Issue 6, pp 1067–1076 | Cite as

Visualizing the pressure and time burden of intracranial hypertension in adult and paediatric traumatic brain injury

  • Fabian Güiza
  • Bart Depreitere
  • Ian Piper
  • Giuseppe Citerio
  • Iain Chambers
  • Patricia A. Jones
  • Tsz-Yan Milly Lo
  • Per Enblad
  • Pelle Nillson
  • Bart Feyen
  • Philippe Jorens
  • Andrew Maas
  • Martin U. Schuhmann
  • Rob Donald
  • Laura Moss
  • Greet Van den Berghe
  • Geert Meyfroidt
Original

Abstract

Purpose

To assess the impact of the duration and intensity of episodes of increased intracranial pressure on 6-month neurological outcome in adult and paediatric traumatic brain injury.

Methods

Analysis of prospectively collected minute-by-minute intracranial pressure and mean arterial blood pressure data of 261 adult and 99 paediatric traumatic brain injury patients from multiple European centres. The relationship of episodes of elevated intracranial pressure (defined as a pressure above a certain threshold during a certain time) with 6-month Glasgow Outcome Scale was visualized in a colour-coded plot.

Results

The colour-coded plot illustrates the intuitive concept that episodes of higher intracranial pressure can only be tolerated for shorter durations: the curve that delineates the duration and intensity of those intracranial pressure episodes associated with worse outcome is an approximately exponential decay curve. In children, the curve resembles that of adults, but the delineation between episodes associated with worse outcome occurs at lower intracranial pressure thresholds. Intracranial pressures above 20 mmHg lasting longer than 37 min in adults, and longer than 8 min in children, are associated with worse outcomes. In a multivariate model, together with known baseline risk factors for outcome in severe traumatic brain injury, the cumulative intracranial pressure–time burden is independently associated with mortality. When cerebrovascular autoregulation, assessed with the low-frequency autoregulation index, is impaired, the ability to tolerate elevated intracranial pressures is reduced. When the cerebral perfusion pressure is below 50 mmHg, all intracranial pressure insults, regardless of duration, are associated with worse outcome.

Conclusions

The intracranial pressure–time burden associated with worse outcome is visualised in a colour-coded plot. In children, secondary injury occurs at lower intracranial pressure thresholds as compared to adults. Impaired cerebrovascular autoregulation reduces the ability to tolerate intracranial pressure insults. Thus, 50 mmHg might be the lower acceptable threshold for cerebral perfusion pressure.

Keywords

Traumatic brain injury Adults Children Intracranial pressure Cerebral perfusion pressure Cerebrovascular autoregulation 

Notes

Acknowledgments

We wish to acknowledge the non-co-author members of the BrainIT steering group: Barbara Gregson, Tim Howells, Karl Kiening, Julia Mattern, Arminas Ragauskas and Juan Sahuquillo, for collecting data and granting permission through the steering group to use them for this project. Similarly, we would also like to acknowledge the contributors to the original study resulting in the paediatric database used here: R.J. Forsyth, B. Fulton, P.J.D. Andrews, A.D. Mendelow and R.A. Minns. The present study was supported by the Foundation for Scientific Research Flanders (FWO) (Research project G. 0904.11). Geert Meyfroidt receives funding from FWO as senior clinical investigator (1846113N). Greet Van den Berghe receives long-term structural research financing via the Methusalem program funded by the Flemish Government (METH/08/07). BrainIT was funded by the European Framework Programme (FP5-QLRI-2000-00454, QLGT-2002-00160 AND FP7-IST-2007-217049). The NEMO project in the University Hospital Edegem (Antwerp), Belgium was funded by the Flemish Government Agency for Innovation by Science and Technology (IWT)—Applied Biomedical Research (TBM) program.

Conflicts of interest

We declare that we have no conflicts of interest.

Supplementary material

134_2015_3806_MOESM1_ESM.pdf (1.3 mb)
Supplementary material 1 (PDF 1382 kb)

References

  1. 1.
    Hydera AA, Wunderlich CA, Puvanachandra P, Gururaj G, Kobusingye OC (2007) The impact of traumatic brain injuries: a global perspective. NeuroRehabilitation 22:341–353Google Scholar
  2. 2.
    Stein SC, Georgoff P, Meghan S, Mizra K, Sonnad SS (2010) 150 years of treating severe traumatic brain injury: a systematic review of progress in mortality. J Neurotrauma 27:1343–1353PubMedCrossRefGoogle Scholar
  3. 3.
    Patel HC, Bouamra O, Woodford M, King AT, Yates DW, Lecky FE (2005) Trends in head injury outcome from 1989 to 2003 and the effect of neurosurgical care: an observational study. Lancet 366:1538–1544PubMedCrossRefGoogle Scholar
  4. 4.
    Rosenfeld JV, Cooper DJ (2005) Management of severe head injury: can we do better? Lancet 366:1509–1510PubMedCrossRefGoogle Scholar
  5. 5.
    Guillaume J, Janny P (1951) Continuous intracranial manometry; importance of the method and first results. Rev Neurol (Paris) 84:131–142Google Scholar
  6. 6.
    Lundberg N, Troupp H, Lorin H (1965) Continuous recording of the ventricular-fluid pressure in patients with severe acute traumatic brain injury. A preliminary report. J Neurosurg 22(6):581–590PubMedCrossRefGoogle Scholar
  7. 7.
    Brain Trauma Foundation, American Association of Neurological Surgeons (AANS), Congress of Neurological Surgeons (CNS), AANS/CNS Joint Section on Neurotrauma and Critical Care (2007) Guidelines for the management of severe traumatic brain injury. VI. Indications for intracranial pressure monitoring. J Neurotrauma 24(Suppl 1):S37–S44Google Scholar
  8. 8.
    Marshall LF, Smith RW, Shapiro HM (1979) The outcome with aggressive treatment in severe head injuries. Part II: acute and chronic barbiturate administration in the management of head injury. J Neurosurg 50(1):26–30PubMedCrossRefGoogle Scholar
  9. 9.
    Narayan RK, Kishore PR, Becker DP, Ward JD, Enas GG, Greenberg RP, Domingues Da Silva A, Lipper MH, Choi SC, Mayhall CG, Lutz HA 3rd, Young HF (1982) Intracranial pressure: to monitor or not to monitor? A review of our experience with severe head injury. J Neurosurg 56(5):650–659PubMedCrossRefGoogle Scholar
  10. 10.
    Saul TG, Ducker TB (1982) Effect of intracranial pressure monitoring and aggressive treatment on mortality in severe head injury. J Neurosurg 56(4):498–503PubMedCrossRefGoogle Scholar
  11. 11.
    Eisenberg HM, Frankowski RF, Contant CF, Marshall LF, Walker MD (1988) High-dose barbiturate control of elevated intracranial pressure in patients with severe head injury. J Neurosurg 69(1):15–23PubMedCrossRefGoogle Scholar
  12. 12.
    Marmarou A, Anderson RL, Ward JD, Choi SC, Young HF, Eisenberg HM, Foulkes MA, Marshall LF, Jane JA (1991) Impact of ICP instability and hypotension on outcome in patients with severe head trauma. J Neurosurg 75:S59–S66Google Scholar
  13. 13.
    Badri S, Chen J, Barber J, Temkin NR, Dikmen SS, Chesnut RM, Deem S, Yanez ND, Treggiari MM (2012) Mortality and long-term functional outcome associated with intracranial pressure after traumatic brain injury. Intensive Care Med 38(11):1800–1809PubMedCrossRefGoogle Scholar
  14. 14.
    Sigurtà A, Zanaboni C, Canavesi K, Citerio G, Beretta L, Stocchetti N (2013) Intensive care for pediatric traumatic brain injury. Intensive Care Med 39(1):129–136PubMedCrossRefGoogle Scholar
  15. 15.
    Vik A, Nag T, Fredriksli OA, Skandsen T, Moen KG, Schirmer-Mikalsen K, Manley GT (2008) Relationship of “dose” of intracranial hypertension to outcome in severe traumatic brain injury. J Neurosurg 109:678–684PubMedCrossRefGoogle Scholar
  16. 16.
    Kahraman S, Dutton R, Hu P, Xiao Y, Aarabi B, Stein DM, Scalea TM (2010) Automated measurement of “pressure times time dose” of intracranial hypertension best predicts outcome after severe traumatic brain injury. J Trauma 69:110–118PubMedCrossRefGoogle Scholar
  17. 17.
    Chambers IR, Jones PA, Lo TY, Forsyth RJ, Fulton B, Andrews PJ, Mendelow AD, Minns RA (2006) Critical thresholds of intracranial pressure and cerebral perfusion pressure related to age in paediatric head injury. J Neurol Neurosurg Psychiatry 77(2):234–240PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Adelson PD, Bratton SL, Carney NA, Chesnut RM, du Coudray HE, Goldstein B, Kochanek PM, Miller HC, Partington MP, Selden NR, Warden CR, Wright DW (2003) Guidelines for the acute medical management of severe traumatic brain injury in infants, children and adolescents. Pediatr Crit Care Med 4(3):S72–S75PubMedGoogle Scholar
  19. 19.
    Cremer OL, van Dijk GW, van Wensen E, Brekelmans GJ, Moons KG, Leenen LP, Kalkman CJ (2005) Effect of intracranial pressure monitoring and targeted intensive care on functional outcome after severe head injury. Crit Care Med 33(10):2207–2213PubMedCrossRefGoogle Scholar
  20. 20.
    Cooper DJ, Rosenfeld JV, Murray L, Arabi YM, Davies AR, D’Urso P, Kossmann T, Ponsford J, Seppelt I, Reilly P, Wolfe R, DECRA Trial Investigators, Australian and New Zealand Intensive Care Society Clinical Trials Group (2011) Decompressive craniectomy in diffuse traumatic brain injury. N Engl J Med 364:1493–1502PubMedCrossRefGoogle Scholar
  21. 21.
    Chesnut RM, Temkin N, Carney N, Dikmen S, Rondina C, Videtta W, Petroni G, Lujan S, Pridgeon J, Barber J, Machamer J, Chaddock K, Celix JM, Cherner M, Hendrix T (2012) A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J Med 367:2471–2481PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Le Roux P (2014) Intracranial pressure after the BEST TRIP trial: a call for more monitoring. Curr Opin Crit Care 20:141–147PubMedCrossRefGoogle Scholar
  23. 23.
    Stocchetti N, Maas AI (2014) Traumatic intracranial hypertension. N Eng J Med 370:2121–2130CrossRefGoogle Scholar
  24. 24.
    Le Roux P, Menon DK, Citerio G, Vespa P, Bader MK, Brophy GM, Diringer MN, Stocchetti N, Videtta W, Armonda R, Badjatia N, Böesel J, Chesnut R, Chou S, Claassen J, Czosnyka M, De Georgia M, Figaji A, Fugate J, Helbok R, Horowitz D, Hutchinson P, Kumar M, McNett M, Miller C, Naidech A, Oddo M, Olson D, O’Phelan K, Provencio JJ, Puppo C, Riker R, Robertson C, Schmidt M, Taccone F (2014) Consensus summary statement of the International Multidisciplinary Consensus Conference on Multimodality Monitoring in Neurocritical Care: a statement for healthcare professionals from the Neurocritical Care Society and the European Society of Intensive Care Medicine. Intensive Care Med 40(9):1189–1209PubMedCrossRefGoogle Scholar
  25. 25.
    Güiza F, Depreitere B, Piper I, Van den Berghe G, Meyfroidt G (2014) New look at the 20 mmHg ICP threshold. Crit Care 18(Suppl 1):P458PubMedCentralCrossRefGoogle Scholar
  26. 26.
    Güiza F, Depreitere B, Lo TY, Jones PA, Chambers IR, Van den Berghe G, Meyfroidt G (2014) Visualizing secondary insults of elevated ICP in pediatric TBI. Intensive Care Med 40(Suppl 1):S18;0037Google Scholar
  27. 27.
    Piper I, Citerio G, Chambers I, Contant C, Enblad P, Fiddes H, Howells T, Kiening K, Nilsson P, Yau YH (2003) The Brain-IT group: concept and core dataset definition. Acta Neurochir (Wien) 145:615–628CrossRefGoogle Scholar
  28. 28.
    Enblad P, Nilsson P, Chambers I, Citerio G, Fiddes H, Howells T, Kiening K, Ragauskas A, Sahuquillo J, Yau YH (2004) R3-survey of traumatic brain injury management in European Brain IT centres year 2001. Intensive Care Med 30(6):1058–1065PubMedCrossRefGoogle Scholar
  29. 29.
    Feyen BFE, Sener S, Jorens PG, Menovsky T, Maas AI (2012) Neuromonitoring in traumatic brain injury. Minerva Anestesiol 78:949–958PubMedGoogle Scholar
  30. 30.
    Nilsson P, Enblad P, Chambers I (2005) Survey of traumatic brain injury management in European Brain-IT centres year 2001. Acta Neurochir (Suppl) 95:51–53Google Scholar
  31. 31.
    Depreitere B, Güiza F, Van den Berghe G, Schuhmann MU, Maier G, Piper I, Meyfroidt G (2014) Pressure autoregulation monitoring and cerebral perfusion pressure target recommendation in severe traumatic brain injury patients based on minute-by-minute monitoring data. J Neurosurg 120:1451–1457PubMedCrossRefGoogle Scholar
  32. 32.
    Steyerberg EW, Mushkudiani N, Perel P, Butcher I, Lu J, McHugh GS, Murray GD, Marmarou A, Roberts I, Habbema JD, Maas AI (2008) Predicting outcome after traumatic brain injury: development and international validation of prognostic scores based on admission characteristics. PLoS Med 5(8):e165PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    IMPACT: International Mission for Prognosis and Analysis of Clinical Trials in TBI (2015) http://www.tbi-impact.org/. Accessed 11 March 2015
  34. 34.
    Sviri GE, Aaslid R, Douville CM, Moore A, Newell DW (2009) Time course for autoregulation recovery following severe traumatic brain injury. J Neurosurg 111:695–700PubMedCrossRefGoogle Scholar
  35. 35.
    Czosnyka M, Smielewski P, Kirkpatrick P, Laing RJ, Menon D, Pickard JD (1997) Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery 41:11–19PubMedCrossRefGoogle Scholar
  36. 36.
    Jaeger M, Schuhmann MU, Soehle M, Meixensberger J (2006) Continuous assessment of cerebrovascular autoregulation after traumatic brain injury using brain tissue oxygen pressure reactivity. Crit Care Med 34(6):1783–1788PubMedCrossRefGoogle Scholar
  37. 37.
    Lazaridis C, DeSantis SM, Smielewski P, Menon DK, Hutchinson P, Pickard JD, Czosnyka M (2014) Patient-specific thresholds of intracranial pressure in severe traumatic brain injury. J Neurosurg 120:893–900PubMedCrossRefGoogle Scholar
  38. 38.
    CENTER-TBI (2015) https://www.center-tbi.eu/. Accessed 6 March 2015
  39. 39.
    Chesnut RM (2015) What the BEST TRIP study means to me as the principle investigator. https://www.braintrauma.org/dr-chesnut-commentary/. Accessed 24 March 2015

Copyright information

© Springer-Verlag Berlin Heidelberg and ESICM 2015

Authors and Affiliations

  • Fabian Güiza
    • 1
  • Bart Depreitere
    • 2
  • Ian Piper
    • 3
  • Giuseppe Citerio
    • 4
  • Iain Chambers
    • 5
  • Patricia A. Jones
    • 6
  • Tsz-Yan Milly Lo
    • 7
  • Per Enblad
    • 8
  • Pelle Nillson
    • 8
  • Bart Feyen
    • 9
  • Philippe Jorens
    • 10
  • Andrew Maas
    • 9
  • Martin U. Schuhmann
    • 11
  • Rob Donald
    • 12
  • Laura Moss
    • 13
  • Greet Van den Berghe
    • 1
  • Geert Meyfroidt
    • 1
  1. 1.Department of Intensive Care MedicineUniversity Hospitals LeuvenLeuvenBelgium
  2. 2.Department of NeurosurgeryUniversity Hospitals LeuvenLeuvenBelgium
  3. 3.Department of Clinical PhysicsSouthern General HospitalGlasgowUK
  4. 4.San Gerardo HospitalMonzaItaly
  5. 5.James Cook University Hospital, Medical PhysicsMiddlesbroughnzaUK
  6. 6.Department of Paediatric NeurologyRoyal Hospital for Sick ChildrenEdinburghUK
  7. 7.Department of Paediatric Intensive CareRoyal Hospital for Sick ChildrenEdinburghUK
  8. 8.Department of NeuroscienceNeurosurgeryUppsalaSweden
  9. 9.Department of NeurosurgeryAntwerp University HospitalEdegemBelgium
  10. 10.Department of Intensive Care MedicineAntwerp University HospitalEdegemBelgium
  11. 11.Klinik für NeurochirurgieUniversitätsklinikum TübingenTübingenGermany
  12. 12.School of Mathematics and StatisticsUniversity of GlasgowGlasgowUK
  13. 13.Department of Clinical Physics and BioengineeringNHS Greater Glasgow & ClydeGlasgowUK

Personalised recommendations