Intensive Care Medicine

, Volume 41, Issue 9, pp 1538–1548 | Cite as

High-flow nasal cannula oxygen during endotracheal intubation in hypoxemic patients: a randomized controlled clinical trial

  • Mickaël Vourc’h
  • Pierre Asfar
  • Christelle Volteau
  • Konstantinos Bachoumas
  • Noëmie Clavieras
  • Pierre-Yves Egreteau
  • Karim Asehnoune
  • Alain Mercat
  • Jean Reignier
  • Samir Jaber
  • Gwenaël Prat
  • Antoine Roquilly
  • Noëlle Brule
  • Daniel Villers
  • Cédric Bretonniere
  • Christophe Guitton
Seven-Day Profile Publication

Abstract

Purpose

Intubation of hypoxemic patients is associated with life-threatening adverse events. High-flow therapy by nasal cannula (HFNC) for preoxygenation before intubation has never been assessed by randomized study. Our objective was to evaluate the efficiency of HFNC for preoxygenation, compared to high fraction-inspired oxygen facial mask (HFFM).

Methods

Multicenter, randomized, open-labelled, controlled PREOXYFLOW trial (NCT 01747109) in six French intensive care units. Acute hypoxemic adults requiring intubation were randomly allocated to HFNC or HFFM. Patients were eligible if PaO2/FiO2 ratio was below 300 mmHg, respiratory rate at least 30/min and if they required FiO2 50 % or more to obtain at least 90 % oxygen saturation. HFNC was maintained throughout the procedure, whereas HFFM was removed at the end of general anaesthesia induction. Primary outcome was the lowest saturation throughout intubation procedure. Secondary outcomes included adverse events related to intubation, duration of mechanical ventilation and death.

Results

A total of 124 patients were randomized. In the intent-to-treat analysis, including 119 patients (HFNC n = 62; HFFM n = 57), the median (interquartile range) lowest saturation was 91.5 % (80–96) for HFNC and 89.5 % (81–95) for the HFFM group (p = 0.44). There was no difference for difficult intubation (p = 0.18), intubation difficulty scale, ventilation-free days (p = 0.09), intubation-related adverse events including desaturation <80 % or mortality (p = 0.46).

Conclusions

Compared to HFFM, HFNC as a preoxygenation device did not reduce the lowest level of desaturation.

Keywords

Preoxygenation High-flow oxygen therapy Severe hypoxemia Intubation 

Supplementary material

134_2015_3796_MOESM1_ESM.doc (160 kb)
Supplementary material 1 (DOC 159 kb)

References

  1. 1.
    De Jong A, Molinari N, Terzi N, Mongardon N, Arnal JM, Guitton C, Allaouchiche B, Paugam-Burtz C, Constantin JM, Lefrant JY, Leone M, Papazian L, Asehnoune K, Maziers N, Azoulay E, Pradel G, Jung B, Jaber S (2013) Early identification of patients at risk for difficult intubation in the intensive care unit: development and validation of the MACOCHA score in a multicenter cohort study. Am J Respir Crit Care Med 187:832–839CrossRefPubMedGoogle Scholar
  2. 2.
    Jaber S, Amraoui J, Lefrant JY, Arich C, Cohendy R, Landreau L, Calvet Y, Capdevila X, Mahamat A, Eledjam JJ (2006) Clinical practice and risk factors for immediate complications of endotracheal intubation in the intensive care unit: a prospective, multiple-center study. Crit Care Med 34:2355–2361CrossRefPubMedGoogle Scholar
  3. 3.
    Baraka A (2009) Preoxygenation of the morbidly obese with obstructive sleep apnea. Middle East J Anesthesiol 20:141–142PubMedGoogle Scholar
  4. 4.
    Benumof JL (1999) Preoxygenation: best method for both efficacy and efficiency. Anesthesiology 91:603–605CrossRefPubMedGoogle Scholar
  5. 5.
    Baillard C, Fosse JP, Sebbane M, Chanques G, Vincent F, Courouble P, Cohen Y, Eledjam JJ, Adnet F, Jaber S (2006) Noninvasive ventilation improves preoxygenation before intubation of hypoxic patients. Am J Respir Crit Care Med 174:171–177CrossRefPubMedGoogle Scholar
  6. 6.
    Roca O, Riera J, Torres F, Masclans JR (2010) High-flow oxygen therapy in acute respiratory failure. Respir Care 55:408–413PubMedGoogle Scholar
  7. 7.
    Parke R, McGuinness S, Eccleston M (2009) Nasal high-flow therapy delivers low level positive airway pressure. Br J Anaesth 103:886–890PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Wettstein RB (2013) A fresh look at the physiologic effects of high-flow nasal cannulae and the role they play in patient care. Respir Care 58:715–716CrossRefPubMedGoogle Scholar
  9. 9.
    Teller LE, Alexander CM, Frumin MJ, Gross JB (1988) Pharyngeal insufflation of oxygen prevents arterial desaturation during apnea. Anesthesiology 69:980–982CrossRefPubMedGoogle Scholar
  10. 10.
    Miguel-Montanes R, Hajage D, Messika J, Bertrand F, Gaudry S, Rafat C, Labbe V, Dufour N, Jean-Baptiste S, Bedet A, Dreyfuss D, Ricard JD, (2014) Use of high-flow nasal cannula oxygen therapy to prevent desaturation during tracheal intubation of intensive care patients with mild-to-moderate hypoxemia. Crit Care Med (in press)Google Scholar
  11. 11.
    Mort TC (2005) Preoxygenation in critically ill patients requiring emergency tracheal intubation. Crit Care Med 33:2672–2675CrossRefPubMedGoogle Scholar
  12. 12.
    Apfelbaum JL, Hagberg CA, Caplan RA, Blitt CD, Connis RT, Nickinovich DG, Hagberg CA, Caplan RA, Benumof JL, Berry FA, Blitt CD, Bode RH, Cheney FW, Connis RT, Guidry OF, Nickinovich DG, Ovassapian A (2013) American Society of Anesthesiologists Task Force on Management of the Difficult Airway Practice guidelines for management of the difficult airway: an updated report by the American Society of Anesthesiologists Task Force on Management of the Difficult Airway. Anesthesiology 118:251–270CrossRefPubMedGoogle Scholar
  13. 13.
    Walz JM, Zayaruzny M, Heard SO (2007) Airway management in critical illness. Chest 131:608–620CrossRefPubMedGoogle Scholar
  14. 14.
    Adnet F, Borron SW, Racine SX, Clemessy JL, Fournier JL, Plaisance P, Lapandry C (1997) The intubation difficulty scale (IDS): proposal and evaluation of a new score characterizing the complexity of endotracheal intubation. Anesthesiology 87:1290–1297CrossRefPubMedGoogle Scholar
  15. 15.
    Groves N, Tobin A (2007) High flow nasal oxygen generates positive airway pressure in adult volunteers. Aust Crit Care 20:126–131CrossRefPubMedGoogle Scholar
  16. 16.
    Parke RL, McGuinness SP, Eccleston ML (2011) A preliminary randomized controlled trial to assess effectiveness of nasal high-flow oxygen in intensive care patients. Respir Care 56:265–270CrossRefPubMedGoogle Scholar
  17. 17.
    Corley A, Caruana LR, Barnett AG, Tronstad O, Fraser JF (2011) Oxygen delivery through high-flow nasal cannulae increase end-expiratory lung volume and reduce respiratory rate in post-cardiac surgical patients. Br J Anaesth 107:998–1004CrossRefPubMedGoogle Scholar
  18. 18.
    Ramachandran SK, Cosnowski A, Shanks A, Turner CR (2010) Apneic oxygenation during prolonged laryngoscopy in obese patients: a randomized, controlled trial of nasal oxygen administration. J Clin Anesth 22:164–168CrossRefPubMedGoogle Scholar
  19. 19.
    Parke RL, McGuinness SP (2013) Pressures delivered by nasal high flow oxygen during all phases of the respiratory cycle. Respir Care 58:1621–1624CrossRefPubMedGoogle Scholar
  20. 20.
    Dellamonica J, Lerolle N, Sargentini C, Beduneau G, Di Marco F, Mercat A, Richard JC, Diehl JL, Mancebo J, Rouby JJ, Lu Q, Bernardin G, Brochard L (2011) PEEP-induced changes in lung volume in acute respiratory distress syndrome. Two methods to estimate alveolar recruitment. Intensive Care Med 37:1595–1604CrossRefPubMedGoogle Scholar
  21. 21.
    Mort TC, Waberski BH, Clive J (2009) Extending the preoxygenation period from 4 to 8 min in critically ill patients undergoing emergency intubation. Crit Care Med 37:68–71CrossRefPubMedGoogle Scholar
  22. 22.
    Eastwood PR, Platt PR, Shepherd K, Maddison K, Hillman DR (2005) Collapsibility of the upper airway at different concentrations of propofol anesthesia. Anesthesiology 103:470–477CrossRefPubMedGoogle Scholar
  23. 23.
    Eastwood PR, Szollosi I, Platt PR, Hillman DR (2002) Collapsibility of the upper airway during anesthesia with isoflurane. Anesthesiology 97:786–793CrossRefPubMedGoogle Scholar
  24. 24.
    Eastwood PR, Szollosi I, Platt PR, Hillman DR (2002) Comparison of upper airway collapse during general anaesthesia and sleep. Lancet 359:1207–1209CrossRefPubMedGoogle Scholar
  25. 25.
    Kirkness JP, Peterson LA, Squier SB, McGinley BM, Schneider H, Meyer A, Schwartz AR, Smith PL, Patil SP (2011) Performance characteristics of upper airway critical collapsing pressure measurements during sleep. Sleep 34:459–467PubMedCentralPubMedGoogle Scholar
  26. 26.
    Perkins GD, McAuley DF, Giles S, Routledge H, Gao F (2003) Do changes in pulse oximeter oxygen saturation predict equivalent changes in arterial oxygen saturation? Crit Care 7:R67PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Seguin P, Le Rouzo A, Tanguy M, Guillou YM, Feuillu A, Malledant Y (2000) Evidence for the need of bedside accuracy of pulse oximetry in an intensive care unit. Crit Care Med 28:703–706CrossRefPubMedGoogle Scholar
  28. 28.
    De Jong A, Clavieras N, Conseil M, Coisel Y, Moury PH, Pouzeratte Y, Cisse M, Belafia F, Jung B, Chanques G, Molinari N, Jaber S (2013) Implementation of a combo videolaryngoscope for intubation in critically ill patients: a before-after comparative study. Intensive Care Med 39:2144–2152CrossRefPubMedGoogle Scholar
  29. 29.
    De Jong A, Molinari N, Conseil M, Coisel Y, Pouzeratte Y, Belafia F, Jung B, Chanques G, Jaber S (2014) Video laryngoscopy versus direct laryngoscopy for orotracheal intubation in the intensive care unit: a systematic review and meta-analysis. Intensive Care Med 40:629–639PubMedGoogle Scholar
  30. 30.
    Mosier JM, Law JA (2014) Airway management in the critically ill. Intensive Care Med 40:727–729CrossRefPubMedGoogle Scholar
  31. 31.
    Jaber S, Jung B, Corne P, Sebbane M, Muller L, Chanques G, Verzilli D, Jonquet O, Eledjam JJ, Lefrant JY (2010) An intervention to decrease complications related to endotracheal intubation in the intensive care unit: a prospective, multiple-center study. Intensive Care Med 36:248–255CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and ESICM 2015

Authors and Affiliations

  • Mickaël Vourc’h
    • 1
  • Pierre Asfar
    • 2
  • Christelle Volteau
    • 3
  • Konstantinos Bachoumas
    • 4
  • Noëmie Clavieras
    • 5
  • Pierre-Yves Egreteau
    • 6
  • Karim Asehnoune
    • 7
    • 8
  • Alain Mercat
    • 2
  • Jean Reignier
    • 4
  • Samir Jaber
    • 5
  • Gwenaël Prat
    • 6
  • Antoine Roquilly
    • 7
    • 8
  • Noëlle Brule
    • 1
  • Daniel Villers
    • 1
  • Cédric Bretonniere
    • 1
  • Christophe Guitton
    • 1
    • 9
  1. 1.Medical Intensive Care Unit, Hôtel-DieuUniversity Hospital of NantesNantesFrance
  2. 2.Medical Intensive Care and Hyperbaric Medicine Department, Angers University HospitalUniversity of AngersAngersFrance
  3. 3.Biometry Platform, Research Promotion DepartmentUniversity Hospital of NantesNantesFrance
  4. 4.Medical-Surgical Intensive Care UnitDistrict Hospital CentreLa Roche/YonFrance
  5. 5.Medical-Surgical Intensive Care UnitUniversity Hospital of Montpellier and INSERM U1046MontpellierFrance
  6. 6.Medical Intensive Care UnitUniversity Hospital Cavale Blanche of BrestBrestFrance
  7. 7.Department of Anaesthesiology, Hôtel-DieuUniversity Hospital of NantesNantesFrance
  8. 8.Department of Surgical Intensive Care, Hôtel-DieuUniversity Hospital of NantesNantesFrance
  9. 9.INSERM UMR1064Nantes Cedex 01France

Personalised recommendations